login

Revision History for A094490

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Primes p such that 2^j+p^j are primes for j=0,2,4,64.
(history; published version)
#6 by Harvey P. Dale at Sun Mar 29 14:54:45 EDT 2015
STATUS

editing

approved

#5 by Harvey P. Dale at Sun Mar 29 14:54:41 EDT 2015
MATHEMATICA

Select[Prime[Range[500000]], AllTrue[Table[2^j+#^j, {j, {0, 2, 4, 64}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 29 2015 *)

STATUS

approved

editing

#4 by N. J. A. Sloane at Tue Oct 15 22:32:24 EDT 2013
AUTHOR

_Labos E. (labos(AT)ana.sote.hu), Elemer_, Jun 01 2004

Discussion
Tue Oct 15
22:32
OEIS Server: https://oeis.org/edit/global/2029
#3 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
MATHEMATICA

{ta=Table[0, {100}], u=1}; Do[s0=2; s2=4+Prime[j]^2; s4=16+Prime[j]^4; s64=2^64+Prime[j]^64 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s64], Print[{j, Prime[j]}]; ta[[u]]=Prime[j]; u=u+1], {j, 1, 1000000}]

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
KEYWORD

nonn,new

nonn

AUTHOR

Labos E. (labos(AT)ana1ana.sote.hu), Jun 01 2004

#1 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
NAME

Primes p such that 2^j+p^j are primes for j=0,2,4,64.

DATA

37, 1423, 8537, 61333, 397963, 419927, 699217, 1151603, 1156823, 1210793, 1746923, 1809163, 1915477, 2012113, 2713127, 3617683, 4001567, 4192033, 4760117, 4768133, 5099623, 5432153, 5801737, 5909737, 5924833, 6118157

OFFSET

1,1

EXAMPLE

For j=0 1+1=2 is prime; other conditions are:

because of p^2+4==prime; 3rd and 4th conditions are as

follows: prime=p^4+16 and prime=2^64+p^64.

MATHEMATICA

{ta=Table[0, {100}], u=1}; Do[s0=2; s2=4+Prime[j]^2; s4=16+Prime[j]^4; s64=2^64+Prime[j]^64 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s64], Print[{j, Prime[j]}]; ta[[u]]=Prime[j]; u=u+1], {j, 1, 1000000}]

CROSSREFS
KEYWORD

nonn,new

AUTHOR

Labos E. (labos(AT)ana1.sote.hu), Jun 01 2004

STATUS

approved