reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Equals polygamma(1, 1/3)/sqrt(3) - 2*Pi^2/3^(3/2). - Vaclav Kotesovec, Jul 07 2021
2.0298832102988321281930725004240510854904057188337861506059958403497821355319
proposed
editing
editing
proposed
David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, p. 38.
D. David H. Bailey and J. Jonathan M. Borwein, <a href="http://www.ams.org/notices/200505/fea-borwein.pdf">Experimental Mathematics: Examples, Methods and Implications</a> p, Notices of the AMS, Vol. 52, No. 4-5 (2005), pp. 502-514. See p. 504.
J. John Milnor, <a href="http://dx.doi.org/10.1090/bull/1507">Topology through the centuries: Low dimensional manifolds</a>, Bull. Amer. Math. Soc., Vol. 52 , No. 4 (2015), pp. 545-584; see p. 562.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FigureEightKnot.html">Figure Eight Knot</a>.
From Amiram Eldar, Jul 07 2021: (Start)
Equals 2*sqrt(3) * Sum_{n>=1} ((1/(n*binomial(2*n,n))) * (Sum_{k=n..(2*n-1)} 1/k)).
Equals 2*Sum_{k>=0} binomial(2*k,k)/(16^k*(2*k+1)^2).
Equals 2*Sum_{k>=1} sin(k*Pi/3)/k^2. (End)
Decimal expansion of -6*int_{x=0..Pi/3} log|2*sin(x)| dx. - Jonathan Sondow, Oct 15 2015
Equals -6 * Integral_{x=0..Pi/3} log|2*sin(x)| dx. - Jonathan Sondow, Oct 15 2015
approved
editing
editing
approved
Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 638.
approved
editing