(MAGMAMagma) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
(MAGMAMagma) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
proposed
approved
editing
proposed
From _Peter Bala, _, Jan 07 2022: (Start)
proposed
editing
editing
proposed
From Peter Bala, Jan 07 2022: (Start)
a(n) = [x^n] (x + sqrt(1 + 12*x^2))^n.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
O.g.f. A(x) = 1 + x*d/dx(log(B(x)), where B(x) = 1/sqrt(1 - 2*x - 11*x^2) is the o.g.f. of A084603. (End)
easy,nonn
nonn,easy
approved
editing
proposed
approved
editing
proposed
1, 1, 13, 37, 217, 841, 4069, 17389, 79537, 350353, 1575613, 7005109, 31341961, 139740121, 624241813, 2785624957, 12437909857, 55517694241, 247852396909, 1106399430469, 4939175226937, 22048744189033, 98428415874373, 439393017828109, 1961498610274321, 8756320416657841
<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,11).
<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,11).
E.g.f.: exp(x)*cosh(2sqrt2*sqrt(3)*x);.
a(n) = ((1 + 2sqrt2*sqrt(3))^n/2 + (1 - 2sqrt2*sqrt(3))^n)/2.
a[n_] := Simplify[((1 + Sqrt[12])^n + (1 - Sqrt[12])^n)/2]; Array[a, 25, 30, 0] (* or *)
CoefficientList[Series[(x - 1)/(11 x11x^2 + 2 x 2x- 1), {x, 0, 2330}], x] (* or *)
Table[ MatrixPower[{{1, 2}, {6, 1}}, n][[1, 1]], {n, 0, 2530}] (* Robert G. Wilson v, Sep 18 2013 and modified per Wolfdieter Lang Feb 17 2018 *)
LinearRecurrence[{2, 11}, {1, 1}, 2530] (* Ray Chandler, Aug 01 2015 *)
(PARI) x='x+O('x^9930); Vec((1-x)/(1-2*x-11*x^2)) \\ Altug Alkan, Feb 17 2018
(GAP) a := [1, 1];; for n in [3..2530] do a[n] := 2*a[n-1]+ 11*a[n-2]; od; a; # Muniru A Asiru, Feb 18 2018
(MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
(Sage) ((1-x)/(1-2*x-11*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
approved
editing
editing
approved