reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
From Miquel A. Fiol, Sep 28 2024 (Start):
a(n) = Sum_{j=0..floor(n/2)} binomial(c+n-2*j-1,n-2*j) or, alternatively,
a(n) = Sum_{j=0..n}(-1)^(n-j)*binomial(c-j,j), in both cases, with c=2 and the shift n -> n-1.
For other values of c we obtain: A002623 (c=3); A001752 (c=4); A001753 (c=5); A001769 (c=6); A001779 (c=7), A001780 (c=8); A001781 (c=9); A001786 (c=10), A001808 (c=11).
(End)
proposed
editing
editing
proposed
Vincenzo Librandi, <a href="/A087811/b087811.txt">Table of n, a(n) for n = 1..300</a>
Vincenzo Librandi, <a href="/A087811/b087811.txt">Table of n, a(n) for n = 1..300</a>
R. H. Hammack and G. D. Smith, <a href="https://doi.org/10.26493/1855-3974.856.4d2">Cycle bases of reduced powers of graphs</a>, Ars Math. Contemp. 12 (2017) 183-203.
Conjecture: a(n) is the independence number of the n-supertoken (or reduced n-th power) FF_n(S_c) of the star graph S_c with c(>=3) edges. - Miquel A. Fiol, Sep 28 2024
proposed
editing
editing
proposed