login

Revision History for A087202

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) is the smallest m such that m > A037153(n) and n!+ m is prime.
(history; published version)
#8 by Russ Cox at Fri Mar 30 17:37:41 EDT 2012
AUTHOR

_Farideh Firoozbakht (mymontain(AT)yahoo.com), _, Sep 01 2003

Discussion
Fri Mar 30
17:37
OEIS Server: https://oeis.org/edit/global/181
#7 by Russ Cox at Fri Mar 30 17:29:08 EDT 2012
EXTENSIONS

Edited by _Ray Chandler (rayjchandler(AT)sbcglobal.net), _, Mar 08 2010

Discussion
Fri Mar 30
17:29
OEIS Server: https://oeis.org/edit/global/154
#6 by N. J. A. Sloane at Thu Nov 11 07:34:06 EST 2010
LINKS

Ray Chandler, <a href="/A087202/b087202.txt">Table of n, a(n) for n=1..1200</a>

KEYWORD

nonn,new

nonn

#5 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
COMMENTS

a(n) is the second m (first m is A037153(n)) such that m > 1 and n!+ m is prime. For 1 < n < 630,a(n) is prime,I guess for n > 1,a(n) (compare the conjecture about A037153) is prime.

Conjecture: For n > 1, a(n) is prime (compare the conjecture about A037153).

Conjecture holds through 1200 terms.

LINKS

Ray Chandler, <a href="b087202.txt">Table of n, a(n) for n=1..1200</a>

FORMULA

A037153[n_] := (For[m=Prime[PrimePi[n]+1], !PrimeQ[n!+m], m++ ]; m); a[n_] := (For[m=A037153[n]+1, !PrimeQ[n!+m], m++ ]; m)

KEYWORD

easy,nonn,new

nonn

AUTHOR

Farideh Firoozbakht (f.firoozbakhtmymontain(AT)math.ui.acyahoo.ircom), Sep 01 2003

EXTENSIONS

Edited by Ray Chandler (rayjchandler(AT)sbcglobal.net), Mar 08 2010

#4 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

A037153[n_] := (For[m=Prime[PrimePi[n]+1], !PrimeQ[n!+m], m++ ]; m); a[n_] := (For[m=A037153[n]+1, !PrimeQ[n!+m], m++ ]; m)

MATHEMATICA

A037153[n_] := (For[m=Prime[PrimePi[n]+1], !PrimeQ[n!+m], m++ ]; m); a[n_] := (For[m=A037153[n]+1, !PrimeQ[n!+m], m++ ]; m); Table[a[n], {n, 60}]

KEYWORD

easy,nonn,new

#3 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
FORMULA

A037153[n_] := (For[m=Prime[PrimePi[n]+1],!PrimeQ[n!+m],m++ ]; m); a[n_] := (For[m=A037153[n]+1,!PrimeQ[n!+m],m++ ]; m)

MATHEMATICA

A037153[n_] := (For[m=Prime[PrimePi[n]+1], !PrimeQ[n!+m], m++ ]; m); a[n_] := (For[m=A037153[n]+1, !PrimeQ[n!+m], m++ ]; m); Table[a[n], {n, 60}]

KEYWORD

easy,nonn,new

#2 by N. J. A. Sloane at Thu Feb 19 03:00:00 EST 2004
FORMULA

A037153[n_]:=(For[m=Prime[PrimePi[n]+1],!PrimeQ[n!+m],m++ ]; m); a[n_]:=(For[m=A037153[n]+1,!PrimeQ[n!+m],m++ ]; m)

MATHEMATICA

A037153[n_]:=(For[m=Prime[PrimePi[n]+1], !PrimeQ[n!+m], m++ ]; m); a[n_]:=(For[m=A037153[n]+1, !PrimeQ[n!+m], m++ ]; m); Table[a[n], {n, 60}]

KEYWORD

easy,nonn,new

#1 by N. J. A. Sloane at Sat Sep 13 03:00:00 EDT 2003
NAME

a(n) is the smallest m such that m > A037153(n) and n!+ m is prime.

DATA

4, 5, 7, 7, 11, 13, 19, 31, 23, 19, 19, 43, 73, 41, 149, 41, 53, 61, 109, 37, 37, 71, 109, 193, 97, 173, 59, 101, 229, 163, 241, 83, 139, 103, 83, 577, 397, 47, 269, 61, 211, 107, 97, 89, 379, 149, 269, 83, 137, 167, 281, 89, 79, 443, 229, 157, 179, 563, 389, 277

OFFSET

1,1

COMMENTS

a(n) is the second m (first m is A037153(n)) such that m > 1 and n!+ m is prime. For 1 < n < 630,a(n) is prime,I guess for n > 1,a(n) (compare the conjecture about A037153) is prime.

FORMULA

A037153[n_]:=(For[m=Prime[PrimePi[n]+1],!PrimeQ[n!+m],m++ ];m); a[n_]:=(For[m=A037153[n]+1,!PrimeQ[n!+m],m++ ];m)

MATHEMATICA

A037153[n_]:=(For[m=Prime[PrimePi[n]+1], !PrimeQ[n!+m], m++ ]; m); a[n_]:=(For[m=A037153[n]+1, !PrimeQ[n!+m], m++ ]; m); Table[a[n], {n, 60}]

CROSSREFS
KEYWORD

easy,nonn,new

AUTHOR

Farideh Firoozbakht (f.firoozbakht(AT)math.ui.ac.ir), Sep 01 2003

STATUS

approved