(MAGMAMagma) f:=function(n) m:=1; while not IsPrime(m*n+1) do m+:=1; end while; return m*n+1; end function; &cat[ [ k eq 1 select f(j) else f(Self(k-1)): k in [1..j] ]: j in [1..9] ]; // Klaus Brockhaus, May 30 2009
(MAGMAMagma) f:=function(n) m:=1; while not IsPrime(m*n+1) do m+:=1; end while; return m*n+1; end function; &cat[ [ k eq 1 select f(j) else f(Self(k-1)): k in [1..j] ]: j in [1..9] ]; // Klaus Brockhaus, May 30 2009
proposed
approved
editing
proposed
It has been proved in the reference that for every prime p there exists a prime of the form k*p+1. Conjecture: sequence is infinite, i.e. , for every n there exists a prime of the form n*k+1 (cf. A034693).
Amarnath Murthy, On the divisors of Smarandache Unary Sequence. Smarandache Notions Journal, Vol. 11, 2000.
(* From J.F._Jean-François Alcover, _, May 31 2011, improved by _Robert G. Wilson v_ *)
(MAGMA) f:=function(n) m:=1; while not IsPrime(m*n+1) do m+:=1; end while; return m*n+1; end function; &cat[ [ k eq 1 select f(j) else f(Self(k-1)): k in [1..j] ]: j in [1..9] ]; [From _// _Klaus Brockhaus_, May 30 2009]
approved
editing
_Amarnath Murthy (amarnath_murthy(AT)yahoo.com), _, May 08 2003
Both follow directly from Dirichlet's theorem. [_Charles R Greathouse IV, _, Feb 28 2012]
T(j, k)=for(i=1, k, j=f(j)); j \\ _Charles R Greathouse IV, _, Feb 28 2012
(MAGMA) f:=function(n) m:=1; while not IsPrime(m*n+1) do m+:=1; end while; return m*n+1; end function; &cat[ [ k eq 1 select f(j) else f(Self(k-1)): k in [1..j] ]: j in [1..9] ]; [From _Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), _, May 30 2009]
Edited, corrected and extended by _Klaus Brockhaus (klaus-brockhaus(AT)t-online.de), _, May 13 2003
proposed
approved
editing
proposed
Both follow directly from Dirichlet's theorem. [Charles R Greathouse IV, Feb 28 2012]
M. L. Perez et al., eds., <a href="http://www.gallup.unm.edu/~smarandache/">Smarandache Notions Journal</a>