proposed
approved
proposed
approved
editing
proposed
5, 13, 29, 53, 85, 125, 173, 229, 293, 365, 445, 533, 629, 733, 845, 965, 1093, 1229, 1373, 1525, 1685, 1853, 2029, 2213, 2405, 2605, 2813, 3029, 3253, 3485, 3725, 3973, 4229, 4493, 4765, 5045, 5333, 5629, 5933, 6245, 6565, 6893, 7229, 7573, 7925, 8285, 8653, 9029
Leo Tavares, <a href="/A078370/a078370.jpg">Square illustration</a>.
a(n) = (2n 2*n + 1)^2 + 4.
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: (5 + 8*x + 4*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
Leo Tavares, <a href="/A078370/a078370.jpg">Square illustration</a>
a(n) = A016754(n) + 4. - Leo Tavares, Feb 22 2023
Cf. A016754.
approved
editing
editing
approved
Discriminants Discriminant of the binary quadratic forms y^2 - x*y - A002061(n+1)*x^2. - Klaus Purath, Nov 10 2022
proposed
editing