login

Revision History for A078370

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = 4*(n+1)*n + 5.
(history; published version)
#86 by Alois P. Heinz at Thu Oct 31 16:26:49 EDT 2024
STATUS

proposed

approved

#85 by Elmo R. Oliveira at Thu Oct 31 15:36:25 EDT 2024
STATUS

editing

proposed

#84 by Elmo R. Oliveira at Thu Oct 31 15:34:34 EDT 2024
DATA

5, 13, 29, 53, 85, 125, 173, 229, 293, 365, 445, 533, 629, 733, 845, 965, 1093, 1229, 1373, 1525, 1685, 1853, 2029, 2213, 2405, 2605, 2813, 3029, 3253, 3485, 3725, 3973, 4229, 4493, 4765, 5045, 5333, 5629, 5933, 6245, 6565, 6893, 7229, 7573, 7925, 8285, 8653, 9029

LINKS

Leo Tavares, <a href="/A078370/a078370.jpg">Square illustration</a>.

FORMULA

a(n) = (2n 2*n + 1)^2 + 4.

From Elmo R. Oliveira, Oct 31 2024: (Start)

E.g.f.: (5 + 8*x + 4*x^2)*exp(x).

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

STATUS

approved

editing

#83 by Michael De Vlieger at Thu Feb 23 07:42:27 EST 2023
STATUS

reviewed

approved

#82 by Michel Marcus at Thu Feb 23 00:19:10 EST 2023
STATUS

proposed

reviewed

#81 by Leo Tavares at Wed Feb 22 15:37:15 EST 2023
STATUS

editing

proposed

#80 by Leo Tavares at Wed Feb 22 15:36:57 EST 2023
LINKS

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

#79 by Leo Tavares at Wed Feb 22 15:35:22 EST 2023
LINKS

Leo Tavares, <a href="/A078370/a078370.jpg">Square illustration</a>

FORMULA

a(n) = A016754(n) + 4. - Leo Tavares, Feb 22 2023

CROSSREFS

Cf. A016754.

STATUS

approved

editing

#78 by N. J. A. Sloane at Sun Dec 11 02:37:55 EST 2022
STATUS

editing

approved

#77 by N. J. A. Sloane at Sun Dec 11 02:37:38 EST 2022
COMMENTS

Discriminants Discriminant of the binary quadratic forms y^2 - x*y - A002061(n+1)*x^2. - Klaus Purath, Nov 10 2022

STATUS

proposed

editing

Discussion
Sun Dec 11
02:37
N. J. A. Sloane: "discriminant"