reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
f[n_, p_, k_] := Binomial[n, k]*HypergeometricPFQ[{1 - k, -p, p-n}, {1-n, 1}, 1]; t[n_, n_] = t[_, 0] = 1; t[n_, k_] := f[n, k, n-1]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
approved
editing
_N. J. A. Sloane (njas(AT)research.att.com), _, Oct 17 2002
nonn,tabl,new
N. J. A. Sloane (njas, (AT)research.att.com), Oct 17 2002
Triangle T(n,k) = f(n,k,n-1), n >= 0, 0 <= k <= n, where f is given below.
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 12, 16, 12, 1, 1, 20, 35, 35, 20, 1, 1, 30, 66, 84, 66, 30, 1, 1, 42, 112, 175, 175, 112, 42, 1, 1, 56, 176, 328, 400, 328, 176, 56, 1, 1, 72, 261, 567, 819, 819, 567, 261, 72, 1, 1, 90, 370, 920, 1540, 1820, 1540, 920, 370, 90, 1, 1, 110, 506, 1419, 2706, 3696, 3696, 2706, 1419, 506, 110, 1, 1, 132, 672
1,5
Michel Lassalle, <a href="http://arXiv.org/abs/math.CO/0210208">A new family of positive integers</a>
f(n,p,k) = binomial(n,k)*hypergeom([1-k,-p,p-n],[1-n,1],1).
1; 1,1; 1,2,1; 1,6,6,1; ...
f:=proc(n, p, k) convert( binomial(n, k)*hypergeom([1-k, -p, p-n], [1-n, 1], 1), `StandardFunctions`); end;
nonn,tabl
njas, Oct 17 2002
approved