reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
G.f.: (of 1,1,2,6,.. .) 1/(1-x-x^2/(1-3x-2x^2/(1-4x-3x^2/(1-5x-4x^2/(1-6x-5x^2/(1-... (continued fraction);
From Sergei N. Gladkovskii, Sep 28 2012 to May 19 2013: (Start) Continued fractions:
Continued fractions:
G.f.: (2+(x^2-4)/(U(0)-x^2+4))/x where U(k) = k*(2*k+3)*x^2 + x - 2 - (2 - x + 2*k*x)*(2 + 3*x + 2*k*x)*(k+1)*x^2/U(k+1).
G.f.: (1+U(0))/x where U(k) = +x*k - 1 + x - x^2*(k+1)/U(k+1).
G.f.: 1 + 1/x - U(0)/x where U(k) = 1 + x - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/x - ((1+x)/x)/G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1))).
G.f.: Q(0) where Q(k) = 1 + x/(1 - x + x*(k+1)/(x - 1/Q(k+1))). (End)
approved
editing
proposed
approved
editing
proposed
Chunyan Yan, Zhicong Lin, <a href="https://arxiv.org/abs/1912.03674">Inversion sequences avoiding pairs of patterns</a>, arXiv:1912.03674 [math.CO], 2019.
approved
editing
editing
approved
Marcelo Aguiar and Swapneel Mahajan, <a href="http://mosaicpi.math.tamucornell.edu/~maguiar/hadamard.pdf">On the Hadamard product of Hopf monoids</a>
M. Meng He, J. Ian Munro, S. Srinivasa Rao, <a href="httphttps://wwwweb.cs.uwaterloodal.ca/~mhe/research/conferencepublications/soda05_suffixarray.pdf">A Categorization Theorem on Suffix Arrays with Applications to Space Efficient Text Indexes</a>, SODA 2005, Definition 2.2.
approved
editing
Vaclav Kotesovec, <a href="/A074664/b074664_1.txt">Table of n, a(n) for n = 1..573</a> (terms 1..100 from T. D. Noe)