login

Revision History for A073554

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of Fibonacci numbers F(k), k <= 10^n, which end in 7.
(history; published version)
#9 by Harvey P. Dale at Wed Mar 29 14:30:39 EDT 2023
STATUS

editing

approved

#8 by Harvey P. Dale at Wed Mar 29 14:30:36 EDT 2023
MATHEMATICA

Join[{0}, Table[10 FromDigits[PadRight[{1}, n, 3]]+4, {n, 30}]] (* Harvey P. Dale, Mar 29 2023 *)

STATUS

approved

editing

#7 by Joerg Arndt at Thu Oct 13 04:55:07 EDT 2022
STATUS

reviewed

approved

#6 by Michel Marcus at Thu Oct 13 04:15:44 EDT 2022
STATUS

proposed

reviewed

#5 by Georg Fischer at Thu Oct 13 04:07:52 EDT 2022
STATUS

editing

proposed

#4 by Georg Fischer at Thu Oct 13 04:07:43 EDT 2022
FORMULA

a(n) = A073550(n) for n >= 3. - Georg Fischer, Oct 13 2022

CROSSREFS

Cf. A073548 (end in 2), A073549 (6), A073550 (1), A073551 (3), (A073552 (4)), A073553 (5), this sequence (7), A073555 (8), A073556 (9).

STATUS

approved

editing

#3 by Charles R Greathouse IV at Wed Oct 02 16:02:48 EDT 2013
FORMULA

If n>1 then a(n)=(2*10^n+10)/15. - _Robert Gerbicz (gerbicz(AT)freemail.hu), _, Sep 06 2002

EXTENSIONS

More terms from _Robert Gerbicz (gerbicz(AT)freemail.hu), _, Sep 06 2002

Discussion
Wed Oct 02
16:02
OEIS Server: https://oeis.org/edit/global/1974
#2 by Charles R Greathouse IV at Wed Oct 02 15:47:18 EDT 2013
AUTHOR

_Shyam Sunder Gupta (guptass(AT)rediffmail.com), _, Aug 15 2002

Discussion
Wed Oct 02
15:47
OEIS Server: https://oeis.org/edit/global/1962
#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

Number of Fibonacci numbers F(k), k <= 10^n, which end in 7.

DATA

0, 14, 134, 1334, 13334, 133334, 1333334, 13333334, 133333334, 1333333334, 13333333334, 133333333334, 1333333333334, 13333333333334, 133333333333334, 1333333333333334, 13333333333333334, 133333333333333334, 1333333333333333334, 13333333333333333334, 133333333333333333334, 1333333333333333333334, 13333333333333333333334

OFFSET

1,2

FORMULA

If n>1 then a(n)=(2*10^n+10)/15. - Robert Gerbicz (gerbicz(AT)freemail.hu), Sep 06 2002

EXAMPLE

a(2)=14 because there are 14 Fibonacci numbers up to 10^2 which end in 7.

KEYWORD

base,nonn

AUTHOR

Shyam Sunder Gupta (guptass(AT)rediffmail.com), Aug 15 2002

EXTENSIONS

More terms from Robert Gerbicz (gerbicz(AT)freemail.hu), Sep 06 2002

STATUS

approved