login

Revision History for A073552

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
#29 by T. D. Noe at Tue Oct 30 13:55:47 EDT 2012
STATUS

reviewed

approved

#28 by Joerg Arndt at Mon Oct 29 02:46:33 EDT 2012
STATUS

proposed

reviewed

#27 by Eric M. Schmidt at Sun Oct 28 16:17:56 EDT 2012
STATUS

editing

proposed

#26 by Eric M. Schmidt at Sun Oct 28 15:57:02 EDT 2012
NAME

Number of Fibonacci numbers F(k), k <= 10^n, which end in 4.

Duplicate of A067275.

COMMENTS

The sequence 1,7,67.... has a(n)=6*10^n/9+3/9. It is the second binomial transform of 6*A001045(3n)/3+(-1)^n. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is k*10^n/9+(1-k/9)=1,1+k,1+11k,1+111k,... - Paul Barry, Mar 24 2004

Except for the first two terms, these are the 3-automorphic numbers ending in 7. - Eric M. Schmidt, Aug 28 2012

LINKS

<a href="/index/Rea#recLCC">Index entries for sequences related to linear recurrences with constant coefficients</a>, signature (11,-10).

FORMULA

a(n)=ceil((2/30)*10^n) - Benoit Cloitre, Aug 27 2002

G.f.: x(1-4x)/((1-x)(1-10x)); a(n)=10^n/15+1/3, n>0. - Paul Barry, Mar 24 2004

a(n)=10*a(n-1)-3, n>1, immediate consequence of the previous formula. [From Vincenzo Librandi, Dec 07 2010]

EXAMPLE

a(2)=7 because 7 of the first 10^2 Fibonacci numbers end in 4.

PROG

(PARI) a(n)=(10^n+13)\15 \\ Charles R Greathouse IV, Jun 05, 2011

CROSSREFS

Cf. A072702.

KEYWORD

base,nonn,easy

dead

AUTHOR

Shyam Sunder Gupta (guptass(AT)rediffmail.com), Aug 15 2002

EXTENSIONS

More terms from Benoit Cloitre, Aug 27 2002

Corrected formula by Bruno Berselli, Jun 10 2010

Example corrected by Jonathan Sondow, Jun 04 2011

STATUS

approved

editing

#25 by N. J. A. Sloane at Tue Aug 28 21:01:40 EDT 2012
STATUS

proposed

approved

#24 by Eric M. Schmidt at Tue Aug 28 19:19:36 EDT 2012
STATUS

editing

proposed

#23 by Eric M. Schmidt at Tue Aug 28 19:19:17 EDT 2012
COMMENTS

Except for the first two terms, these are the 3-automorphic numbers ending in 7. - Eric M. Schmidt, Aug 28 2012

STATUS

approved

editing

#22 by Russ Cox at Fri Mar 30 19:00:08 EDT 2012
EXTENSIONS

Example corrected by _Jonathan Sondow (jsondow(AT)alumni.princeton.edu), _, Jun 04 2011

Discussion
Fri Mar 30
19:00
OEIS Server: https://oeis.org/edit/global/301
#21 by Russ Cox at Fri Mar 30 18:58:42 EDT 2012
COMMENTS

The sequence 1,7,67.... has a(n)=6*10^n/9+3/9. It is the second binomial transform of 6*A001045(3n)/3+(-1)^n. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is k*10^n/9+(1-k/9)=1,1+k,1+11k,1+111k,... - _Paul Barry (pbarry(AT)wit.ie), _, Mar 24 2004

FORMULA

G.f.: x(1-4x)/((1-x)(1-10x)); a(n)=10^n/15+1/3, n>0. - _Paul Barry (pbarry(AT)wit.ie), _, Mar 24 2004

Discussion
Fri Mar 30
18:58
OEIS Server: https://oeis.org/edit/global/287
#20 by Russ Cox at Fri Mar 30 18:39:05 EDT 2012
FORMULA

a(n)=ceil((2/30)*10^n) - _Benoit Cloitre (benoit7848c(AT)orange.fr), _, Aug 27 2002

EXTENSIONS

More terms from _Benoit Cloitre (benoit7848c(AT)orange.fr), _, Aug 27 2002

Discussion
Fri Mar 30
18:39
OEIS Server: https://oeis.org/edit/global/216