editing
approved
editing
approved
LinearRecurrence[{21, 353, -32}, {1, 2, 254}, 20] (* Harvey P. Dale, Jun 18 2023 *)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = (1/5)*32^n + (2/5)*(-11/2 + (5/2)*sqrt(5))^n + (2/5)*(-11/2 - (5/2)*sqrt(5))^n.
Let b(n) = a(n) - 2^(5n)/5 ; then b(n) + 11*b(n-1) - b(n-2) = 0 . - Benoit Cloitre, May 27 2004
proposed
editing
editing
proposed
(PARI) Vec((1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)) + O(x^4020)) \\ Colin Barker, May 27 2019
proposed
editing
editing
proposed
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (21,353,-32).
From Colin Barker, May 27 2019: (Start)
G.f.: (1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)).
a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>2.
(End)
(PARI) Vec((1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)) + O(x^40)) \\ Colin Barker, May 27 2019
approved
editing