login

Revision History for A070394

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = 6^n mod 17.
(history; published version)
#20 by N. J. A. Sloane at Sat Dec 07 12:18:23 EST 2019
PROG

(Sage) [power_mod(6, n, 17)for n in xrangerange(0, 86)] # Zerinvary Lajos, Nov 27 2009

Discussion
Sat Dec 07
12:18
OEIS Server: https://oeis.org/edit/global/2837
#19 by Bruno Berselli at Sat Mar 19 05:59:22 EDT 2016
STATUS

editing

approved

#18 by Bruno Berselli at Sat Mar 19 05:59:19 EDT 2016
KEYWORD

nonn,easy,changed

STATUS

proposed

editing

#17 by Michel Marcus at Sat Mar 19 01:02:59 EDT 2016
STATUS

editing

proposed

#16 by Michel Marcus at Sat Mar 19 01:02:54 EDT 2016
LINKS

<a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,-1,1). [From __R. J. Mathar_, Apr 20 2010]

STATUS

proposed

editing

#15 by Altug Alkan at Fri Mar 18 19:17:08 EDT 2016
STATUS

editing

proposed

#14 by Altug Alkan at Fri Mar 18 19:16:31 EDT 2016
NAME

a(n) = 6^n mod 17.

PROG

(PARI) a(n) = lift(Mod(6, 17)^n); \\ Altug Alkan, Mar 18 2016

STATUS

proposed

editing

#13 by G. C. Greubel at Fri Mar 18 18:43:31 EDT 2016
STATUS

editing

proposed

#12 by G. C. Greubel at Fri Mar 18 18:42:23 EDT 2016
LINKS

G. C. Greubel, <a href="/A070394/b070394.txt">Table of n, a(n) for n = 0..1000</a>

FORMULA

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-8) + a(n-9).

a(n) = +a(n-1) -a(n-8) +a(n-9). G.f.: ( -1-5*x+4*x^2-10*x^3+8*x^4-3*x^5-x^6-6*x^7-3*x^8 ) / ( (x-1)*(1+x^8) ). [From _R. J. Mathar_, Apr 20 2010](End)

a(n) = a(n-16). - G. C. Greubel, Mar 18 2016

MATHEMATICA

PowerMod[6, Range[0, 50], 17] (* G. C. Greubel, Mar 18 2016 *)

PROG

(Sage) [power_mod(6, n, 17)for n in xrange(0, 86)] # [From __Zerinvary Lajos_, Nov 27 2009]

KEYWORD

nonn,changed

STATUS

approved

editing

#11 by Charles R Greathouse IV at Sat Jun 13 00:50:33 EDT 2015
LINKS

<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,-1,1). [From R. J. Mathar, Apr 20 2010]

Discussion
Sat Jun 13
00:50
OEIS Server: https://oeis.org/edit/global/2439