(Sage) [power_mod(6, n, 17)for n in xrangerange(0, 86)] # Zerinvary Lajos, Nov 27 2009
(Sage) [power_mod(6, n, 17)for n in xrangerange(0, 86)] # Zerinvary Lajos, Nov 27 2009
editing
approved
nonn,easy,changed
proposed
editing
editing
proposed
<a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,-1,1). [From __R. J. Mathar_, Apr 20 2010]
proposed
editing
editing
proposed
a(n) = 6^n mod 17.
(PARI) a(n) = lift(Mod(6, 17)^n); \\ Altug Alkan, Mar 18 2016
proposed
editing
editing
proposed
G. C. Greubel, <a href="/A070394/b070394.txt">Table of n, a(n) for n = 0..1000</a>
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9).
a(n) = +a(n-1) -a(n-8) +a(n-9). G.f.: ( -1-5*x+4*x^2-10*x^3+8*x^4-3*x^5-x^6-6*x^7-3*x^8 ) / ( (x-1)*(1+x^8) ). [From _R. J. Mathar_, Apr 20 2010](End)
a(n) = a(n-16). - G. C. Greubel, Mar 18 2016
PowerMod[6, Range[0, 50], 17] (* G. C. Greubel, Mar 18 2016 *)
(Sage) [power_mod(6, n, 17)for n in xrange(0, 86)] # [From __Zerinvary Lajos_, Nov 27 2009]
nonn,changed
approved
editing
<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,-1,1). [From R. J. Mathar, Apr 20 2010]