reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Let a(n) = (2^(n-1)/(2n)!)*Product_{k=1..n} q(k) where q(n) denote is the denominator of B(2n), the 2n-th Bernoulli number: a(n) = (2^(n-1)/(2n)!)*Product_{k=1..n} q(n).
(PARI) a(n) = (2^(n-1)/(2*n)!)*prod(k=1, n, denominator(bernfrac(2*k))); \\ Michel Marcus, Jan 04 2021
Cf. A002445.
Name edited by Michel Marcus, Jan 04 2021
proposed
editing
editing
proposed
Let q(n) denote the denominator of B(2n), the 2n-th Bernoulli number : a(n) = (2^(n-1)/(2n)!)*prod(Product_{k=1,..n,} q(n)).
lim Lim_{n-> inf } a(n)^(1/n) = 1.
approved
editing
_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Apr 14 2002
easy,nonn,new
Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Apr 14 2002
easy,nonn,new
Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Apr 14 2002
easy,nonn,new
Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Apr 14 2002