login

Revision History for A059301

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of filter bases of an n-set.
(history; published version)
#17 by Vaclav Kotesovec at Mon Nov 27 07:40:18 EST 2017
STATUS

editing

approved

#16 by Vaclav Kotesovec at Mon Nov 27 07:40:14 EST 2017
FORMULA

a(n) ~ n * 2^(2^(n-1)-1). - Vaclav Kotesovec, Nov 27 2017

STATUS

approved

editing

#15 by Joerg Arndt at Sat Jan 07 02:43:38 EST 2017
STATUS

proposed

approved

#14 by G. C. Greubel at Fri Jan 06 14:43:42 EST 2017
STATUS

editing

proposed

#13 by G. C. Greubel at Fri Jan 06 14:43:33 EST 2017
MATHEMATICA

Table[Sum[Binomial[n, k]*2^(2^k - 1), {k, 0, n - 1}], {n, 1, 10}] (* G. C. Greubel, Jan 06 2017 *)

STATUS

approved

editing

#12 by Joerg Arndt at Mon Jan 04 01:39:14 EST 2016
STATUS

proposed

approved

#11 by Michel Marcus at Sun Jan 03 15:15:18 EST 2016
STATUS

editing

proposed

#10 by Michel Marcus at Sun Jan 03 15:15:13 EST 2016
PROG

(PARI) a(n) = sum(k=0, n-1, binomial(n, k)*2^(2^k-1)); \\ Michel Marcus, Jan 03 2016

STATUS

proposed

editing

#9 by Jon E. Schoenfield at Sun Jan 03 14:35:40 EST 2016
STATUS

editing

proposed

#8 by Jon E. Schoenfield at Sun Jan 03 14:35:35 EST 2016
LINKS

Harry J. Smith, <a href="/A059301/b059301.txt">Table of n, a(n) for n = 1,...,12</a>

FORMULA

a(n) = Sum (_{k=0..n-1} binomial(n, k)*2^(2^k-1), k=0..n-1).

PROG

(PARI) { for (n = 1, 12, a=0; for (k=0, n-1, a+=binomial(n, k)*2^(2^k - 1); ); write("b059301.txt", n, " ", a); ) } [From _\\ _Harry J. Smith_, Jun 25 2009]

STATUS

approved

editing