login

Revision History for A056859

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle of number of falls in set partitions of n.
(history; published version)
#20 by Alois P. Heinz at Tue May 24 03:06:34 EDT 2016
STATUS

proposed

approved

#19 by Jean-François Alcover at Tue May 24 00:20:07 EDT 2016
STATUS

editing

proposed

#18 by Jean-François Alcover at Tue May 24 00:20:00 EDT 2016
MATHEMATICA

b[n_, i_, m_] := b[n, i, m] = If[n == 0, x, Expand[Sum[b[n - 1, j, Max[m, j]]*If[j < i, x, 1], {j, 1, m + 1}]]];

T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1, 0]];

Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 24 2016, after Alois P. Heinz *)

STATUS

approved

editing

#17 by Alois P. Heinz at Thu Mar 24 13:14:07 EDT 2016
STATUS

editing

approved

#16 by Alois P. Heinz at Thu Mar 24 13:14:02 EDT 2016
LINKS

Alois P. Heinz, <a href="/A056859/b056859.txt">Rows n = 1..100, flattened</a>

MAPLE

b:= proc(n, i, m) option remember;

`if`(n=0, x, expand(add(b(n-1, j, max(m, j))*

`if`(j<i, x, 1), j=1..m+1)))

end:

T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1, 0)):

seq(T(n), n=1..12); # Alois P. Heinz, Mar 24 2016

#15 by Alois P. Heinz at Thu Mar 24 11:17:02 EDT 2016
DATA

1, 2, 0, 4, 1, 0, 8, 7, 0, 0, 16, 32, 4, 0, 0, 32, 121, 49, 1, 0, 0, 64, 411, 360, 42, 0, 0, 0, 128, 1304, 2062, 624, 22, 0, 0, 0, 256, 3949, 10163, 6042, 730, 7, 0, 0, 0, 512, 11567, 45298, 45810, 12170, 617, 1, 0, 0, 0, 1024, 33056, 187941, 296017, 141822, 18325, 385, 0, 0, 0, 0

STATUS

approved

editing

#14 by R. J. Mathar at Fri Mar 04 14:48:07 EST 2016
STATUS

editing

approved

#13 by R. J. Mathar at Fri Mar 04 14:47:48 EST 2016
EXAMPLE

32,121,49,1,0,0; ...

64,411,360,42,0,0,0;

128,1304,2062,624,22,0,0,0;

256,3949,10163,6042,730,7,0,0,0;

512,11567,45298,45810,12170,617,1,0,0,0;

1024,33056,187941,296017,141822,18325,385,0,0,0,0;

2048,92721,739352,1708893,1318395,330407,21605,176,0,0,0,0;

STATUS

approved

editing

#12 by R. J. Mathar at Fri Mar 04 14:32:42 EST 2016
STATUS

editing

approved

#11 by R. J. Mathar at Fri Mar 04 14:32:21 EST 2016
EXAMPLE

T(n=3,f=0)=4 counts the partitions {1,1,1}, {1,1,2}, {1,2,2}, and {1,2,3}. T(n=3,f=1) counts the partition {1,2,1}. - R. J. Mathar, Mar 04 2016