_Vladeta Jovovic (vladeta(AT)eunet.rs), _, Aug 04 2000
_Vladeta Jovovic (vladeta(AT)eunet.rs), _, Aug 04 2000
proposed
approved
fini,full,nonn
approved
proposed
fini,nonn,new
Vladeta Jovovic (vladeta(AT)Euneteunet.yurs), Aug 04 2000
G. f. : Z(S_6 X S_6; x_1, x_2, ...)-2*Z(S_6 X S_5; x_1, x_2, ...)+Z(S_5 X S_5; x_1, x_2, ...) if we replace x_i by 1+x^i, where Z(S_i X S_j; x_1, x_2, ...) is cycle index of Cartesian product of symmetric groups S_i and S_j of degree i and j, respectively.
fini,nonn,new
G. f. : Z(S_6 X S_6; x_1, x_2, ...)-2*Z(S_6 X S_5; x_1, x_2, ...)+Z(S_5 X S_5; x_1, x_2, ...) if we replace x_i by 1+x^i, where Z(S_i X S_j; x_1, x_2, ...) is cycle index of Cartesian product of symmetric groups S_i and S_j of degree i and j, respectively.
fini,nonn,new
Number of 6x6 binary matrices with n ones, with no zero rows or columns, up to row and column permutation.
G. f. : Z(S_6 X S_6; x_1,x_2,...)-2*Z(S_6 X S_5; x_1,x_2,...)+Z(S_5 X S_5; x_1,x_2,...) if we replace x_i by 1+x^i, where Z(S_i X S_j; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_i and S_j of degree i and j,respectively.
fini,nonn,new
6x6 binary matrices with n ones, with no zero rows or columns, up to row and column permutation.
1, 2, 15, 69, 288, 840, 2144, 4488, 8317, 13160, 18636, 23078, 25856, 25623, 23187, 18713, 13932, 9288, 5816, 3256, 1767, 858, 419, 180, 88, 34, 16, 6, 3, 1, 1
6,2
Sum_{k=0..36} a(n)=A054976(6).
G. f. : Z(S_6 X S_6;x_1,x_2,...)-2*Z(S_6 X S_5;x_1,x_2,...)+Z(S_5 X S_5;x_1,x_2,...) if we replace x_i by 1+x^i, where Z(S_i X S_j;x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_i and S_j of degree i and j,respectively.
Cf. A052370.
fini,nonn
Vladeta Jovovic (vladeta(AT)Eunet.yu), Aug 04 2000
approved