login

Revision History for A056033

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
5-morphic but not bimorphic nor automorphic.
(history; published version)
#4 by Bruno Berselli at Sun Sep 30 01:45:34 EDT 2012
STATUS

editing

approved

#3 by Bruno Berselli at Sun Sep 30 01:44:38 EDT 2012
COMMENTS

Do[x=Floor[N[Log[10, n],25]]+1; If[Mod[n^5, 10^x] == n,If[Mod[n^2, 10^x]!= n, Print[n]]], {n,1,10^4}]

MATHEMATICA

Do[x=Floor[N[Log[10, n], 25]]+1; If[Mod[n^5, 10^x] == n, If[Mod[n^2, 10^x]!= n, Print[n]]], {n, 10^4}]

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:30:25 EDT 2012
AUTHOR

_Robert G. Wilson v (rgwv(AT)rgwv.com), _, Jul 24 2000

Discussion
Fri Mar 30
17:30
OEIS Server: https://oeis.org/edit/global/156
#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

5-morphic but not bimorphic nor automorphic.

DATA

2, 3, 4, 7, 8, 9, 24, 32, 43, 49, 51, 57, 68, 75, 93, 99, 125, 193, 249, 251, 307, 375, 432, 443, 499, 501, 557, 568, 624, 693, 749, 751, 807, 875, 943, 999, 1249, 1251, 1693, 1875, 2057, 2499, 2501, 2943, 3125, 3307, 3568, 3749, 3751, 4193, 4375, 4557, 4999

OFFSET

1,1

COMMENTS

Do[x=Floor[N[Log[10, n],25]]+1; If[Mod[n^5, 10^x] == n,If[Mod[n^2, 10^x]!= n, Print[n]]], {n,1,10^4}]

CROSSREFS

Cf. A003226 and A033819.

KEYWORD

easy,nonn

AUTHOR

Robert G. Wilson v (rgwv(AT)rgwv.com), Jul 24 2000

STATUS

approved