(MAGMAMagma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(17/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
(MAGMAMagma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(17/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
proposed
approved
editing
proposed
proposed
reviewed
editing
proposed
a(n) = ((7*n+10)(!^7))/10(1^7), related to A034830 (((7*n+3)(!^7))/3 sept-, or 7-factorials).
G. C. Greubel, <a href="/A053106/b053106.txt">Table of n, a(n) for n = 0..337</a>
With[{nn = 30}, CoefficientList[Series[1/(1 - 7*x)^(17/7), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-7*x)^(17/7))) \\ G. C. Greubel, Aug 16 2018
(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-7*x)^(17/7))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
approved
editing
proposed
approved
editing
proposed
a(n) = ((7*n+10)(!^7))/10(!^7) = A034830(n+2)/10; e.g.f.: 1/(1-7*x)^(17/7).
E.g.f.: 1/(1-7*x)^(17/7).
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 16, 5!, 7}]; lst [From _(* _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008] *)
approved
editing