login

Revision History for A052843

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
A simple grammar.
(history; published version)
#22 by N. J. A. Sloane at Tue Apr 18 07:04:11 EDT 2017
LINKS

INRIA Algorithms Project, <a href="http://algoecs.inria.fr/ecsservices/ecsstructure?searchType=1&amp;service=Search&amp;searchTermsnbr=811">Encyclopedia of Combinatorial Structures 811</a>

Discussion
Tue Apr 18
07:04
OEIS Server: https://oeis.org/edit/global/2632
#21 by Alois P. Heinz at Fri Mar 06 06:17:44 EST 2015
STATUS

editing

approved

#20 by Alois P. Heinz at Fri Mar 06 06:17:41 EST 2015
MATHEMATICA

nn=35; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, -s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); it=Table[a[i], {i, 1, nn}]; CoefficientList[Series[Product[1/(1-x^i)^it[[i]], {i, 1, nn}], {x, 0, nn}], x] (* after code given by _Robert A. Russel_ Russell_ in A004111 *)

STATUS

approved

editing

#19 by Alois P. Heinz at Fri Mar 06 06:17:03 EST 2015
STATUS

editing

approved

#18 by Alois P. Heinz at Fri Mar 06 06:16:59 EST 2015
MATHEMATICA

nn=35; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, -s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); it=Table[a[i], {i, 1, nn}]; CoefficientList[Series[Product[1/(1-x^i)^it[[i]], {i, 1, nn}], {x, 0, nn}], x] (* after code given by _Robert A . Russel _ in A004111 *)

STATUS

approved

editing

#17 by Alois P. Heinz at Fri Mar 06 06:15:45 EST 2015
STATUS

editing

approved

#16 by Alois P. Heinz at Fri Mar 06 06:15:37 EST 2015
LINKS

Alois P. Heinz, <a href="/A052843/b052843.txt">Table of n, a(n) for n = 0..1000</a>

MAPLE

# second Maple program:

with(numtheory):

b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(d*

b(d)*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))

end:

a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d),

d=divisors(j)) *a(n-j), j=1..n)/n)

end:

seq(a(n), n=0..40); # Alois P. Heinz, Mar 06 2015

CROSSREFS

Cf. A004111.

STATUS

approved

editing

#15 by Joerg Arndt at Sat Oct 13 12:25:27 EDT 2012
STATUS

editing

approved

#14 by Joerg Arndt at Sat Oct 13 12:25:22 EDT 2012
COMMENTS

a(n) is the number of forests of rooted unlabeled identity trees. Euler tarnsform transform of A004111. - Geoffrey Critzer, Oct 13 2012

#13 by Joerg Arndt at Sat Oct 13 12:24:43 EDT 2012
EXTENSIONS

added Added more terms _, _Geoffrey Critzer_, Oct 13 2012

STATUS

proposed

editing