login

Revision History for A052693

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of e.g.f. (1-x)/(1-3*x+x^3).
(history; published version)
#19 by Joerg Arndt at Wed Jun 08 03:27:36 EDT 2022
STATUS

reviewed

approved

#18 by Michel Marcus at Wed Jun 08 01:39:59 EDT 2022
STATUS

proposed

reviewed

#17 by Michel Marcus at Thu Jun 02 00:42:34 EDT 2022
STATUS

editing

proposed

#16 by Michel Marcus at Thu Jun 02 00:42:30 EDT 2022
CROSSREFS
STATUS

proposed

editing

#15 by G. C. Greubel at Wed Jun 01 23:29:15 EDT 2022
STATUS

editing

proposed

#14 by G. C. Greubel at Wed Jun 01 23:29:03 EDT 2022
NAME

EExpansion of e.g.f. (1-x)/(1-3x3*x+x^3).

LINKS

G. C. Greubel, <a href="/A052693/b052693.txt">Table of n, a(n) for n = 0..375</a>

FORMULA

E.g.f.: -(-1+-x)/(1-3*x+x^3).

Recurrence: {a(0)=1, a(1)=2, a(2)=12 a(n^+3) = 3+6*n^2+11*(n+63)*a(n)+(2) -3* (n-9+1)*a(n+2)+a*(n+3)=0, *a(2n)=12}.

Sum(-1/9*(-2+_alpha^2-_alpha)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z+_Z^3))*n!

a(n) = (n!/9)*Sum_{alpha=RootOf(1 -3*Z +Z^3)} (2 - alpha + alpha^2)*alpha^(-1-n).

a(n) = n! * A052536(n). - G. C. Greubel, Jun 01 2022

PROG

(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (1-x)/(1-3*x+x^3) ))); // G. C. Greubel, Jun 01 2022

(SageMath)

@CachedFunction

def A052536(n):

if (n<3): return factorial(n+1)

else: return 3*A052536(n-1) - A052536(n-3)

def A052693(n): return factorial(n)*A052536(n)

[A052693(n) for n in (0..40)] # G. C. Greubel, Jun 01 2022

CROSSREFS

Cf. A052536.

STATUS

approved

editing

#13 by N. J. A. Sloane at Tue Apr 18 07:04:01 EDT 2017
LINKS

INRIA Algorithms Project, <a href="http://algoecs.inria.fr/ecsservices/ecsstructure?searchType=1&amp;service=Search&amp;searchTermsnbr=642">Encyclopedia of Combinatorial Structures 642</a>

Discussion
Tue Apr 18
07:04
OEIS Server: https://oeis.org/edit/global/2632
#12 by Harvey P. Dale at Mon Dec 17 16:40:06 EST 2012
STATUS

editing

approved

#11 by Harvey P. Dale at Mon Dec 17 16:39:54 EST 2012
MATHEMATICA

With[{nn=20}, CoefficientList[Series[(1-x)/(1-3x+x^3), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Dec 17 2012 *)

STATUS

approved

editing

#10 by Charles R Greathouse IV at Thu Dec 01 11:32:11 EST 2011
LINKS

INRIA Algorithms Project, <a href="http://algo.inria.fr/binecs/encyclopediaecs?searchType=1&amp;service=Search=ECSnb&amp;argsearchsearchTerms=642">Encyclopedia of Combinatorial Structures 642</a>

Discussion
Thu Dec 01
11:32
OEIS Server: https://oeis.org/edit/global/103