editing
approved
editing
approved
With[{nn=20}, CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jan 29 2023 *)
approved
editing
INRIA Algorithms Project, <a href="http://algoecs.inria.fr/ecsservices/ecsstructure?searchType=1&service=Search&searchTermsnbr=609">Encyclopedia of Combinatorial Structures 609</a>
editing
approved
a(n) = n!*A052534(n). - _R. J. Mathar, _, Nov 27 2011
approved
editing
INRIA Algorithms Project, <a href="http://algo.inria.fr/binecs/encyclopediaecs?searchType=1&=ECSnb&argsearchsearchTerms=609">Encyclopedia of Combinatorial Structures 609</a>
editing
approved
A simple regular expression in a labeled universe.
E.g.f. (1-x^2)/(1-2x-x^2+x^3).
Recurrence: {a(0)=1, a(1)=2, a(2)=8, (n^3+6*n^2+11*n+6)*a(n)+(-n^2-5*n-6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)=0}
a(n) = n!*A052534(n). - R. J. Mathar, Nov 27 2011
approved
editing
INRIA Algorithms Project, <a href="http://algo.inria.fr/bin/encyclopedia?Search=ECSnb&argsearch=609">Encyclopedia of Combinatorial Structures 609</a>
easy,nonn,new
Recurrence: {a(0)=1, a(1)=2, a(2)=8, (n^3+6*n^2+11*n+6)*a(n)+(-n^2-5*n-6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)}
Sum(1/7*(2+_alpha)*_alpha^(-1-n),_ _alpha=RootOf(_Z^3-_Z^2-2*_Z+1))*n!
easy,nonn,new