(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-2*x^3+2*x^4-x^2) )); // G. C. Greubel, May 08 2019
(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-2*x^3+2*x^4-x^2) )); // G. C. Greubel, May 08 2019
proposed
approved
editing
proposed
a(n) = Sum_{alpha = RootOf(1-x-2*x^3+2*x^4-x^2)} (-1/353 * (-18-106*alpha+33*alpha^2+28*alpha^3) * alpha^(-1-n), alpha=RootOf(1-x-2*x^3+2*x^4-x^2)).
proposed
editing
editing
proposed
a(n) = Sum(-1/353 * (-18-106*_alpha+33*_alpha^2+28*_alpha^3) *_ alpha^(-1-n), _alpha=RootOf(1-_Zx-2*_Zx^3+2*_Zx^4-_Zx^2)).
reviewed
editing
proposed
reviewed
editing
proposed
Expansion of (1-x)/(1-x-x^2-2x2*x^3+2x2*x^4).
G. C. Greubel, <a href="/A052546/b052546.txt">Table of n, a(n) for n = 0..1000</a>
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,2,-2).
G.f.: -(-1+-x)/(1-x-2*x^3+2*x^4-x^2).
Recurrence: {a(1n) =0, a(0)=n-1, ) + a(n-2)=1, a(3)=3, + 2*a(n-3) - 2*a(n+-4), with a(0)=1, a(1)-=0, a(n+2)-=1, a(n+3)+a(n+4)=0}3.
a(n) = Sum(-1/353*(-18-106*_alpha+33*_alpha^2+28*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-_Z-2*_Z^3+2*_Z^4-_Z^2)).
spec := [S, {S=Sequence(Prod(Z, Z, Union(Z, Z, Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..2040);
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-x-2*x^3+2*x^4-x^2)) \\ G. C. Greubel, May 08 2019
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-2*x^3+2*x^4-x^2) )); // G. C. Greubel, May 08 2019
(Sage) ((1-x)/(1-x-2*x^3+2*x^4-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
(GAP) a:=[1, 0, 1, 3];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3] -2*a[n-4]; od; a; # G. C. Greubel, May 08 2019
approved
editing
editing
approved