(MAGMAMagma) [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
(MAGMAMagma) [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
editing
approved
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020
Wikipedia, <a href="https://en.wikipedia.org/wiki/Bijective_numeration">Bijective numeration</a>
approved
editing
proposed
approved
editing
proposed
\\ See OEIS wiki Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
proposed
editing
editing
proposed
Sum_{n>=1} 1/a(n) = 23.1034479..., the = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
Lim_lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
From _For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012, and Jun 06 2012, and May 28 2014; edited by M. F. Hasler, Jan 13 2020: (Start)
a(10^k) = (1, 11, 121, 1331, 14641, 162151, ...) = A325203(k), for k >= 0. (End)
next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n, useful to compute {N <= a(k) <= M}, e.g Used in A038618.:
( {A052382_vec(n, M=1)=M--; vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
\\ _See OEIS wiki page (cf. LINKS) for more programs. - _M. F. Hasler_, Jan 11 2020
proposed
editing
editing
proposed