login

Revision History for A050067

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n)=a(n-1)+a(m), where m=2n-2-2^(p+1) and 2^p<n-1<=2^(p+1), for n >= 4.
(history; published version)
#9 by Bruno Berselli at Mon Sep 07 08:16:48 EDT 2015
STATUS

reviewed

approved

#8 by Joerg Arndt at Mon Sep 07 06:37:02 EDT 2015
STATUS

proposed

reviewed

#7 by Ivan Neretin at Mon Sep 07 06:32:44 EDT 2015
STATUS

editing

proposed

#6 by Ivan Neretin at Mon Sep 07 06:32:06 EDT 2015
LINKS

Ivan Neretin, <a href="/A050067/b050067.txt">Table of n, a(n) for n = 1..8193</a>

MATHEMATICA

Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 3}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* Ivan Neretin, Sep 07 2015 *)

CROSSREFS

Cf. A050027, A050031, A050035, A050039, A050043, A050047, A050051, A050055, A050059, A050063, A050071 (similar, but with different initial conditions).

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 18:57:00 EDT 2012
AUTHOR

Clark Kimberling (ck6(AT)evansville.edu)

Clark Kimberling

Discussion
Fri Mar 30
18:57
OEIS Server: https://oeis.org/edit/global/285
#4 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
NAME

a(n)=a(n-1)+a(m), where m=2n-2-2^(p+1), and 2^p<n-1<=2^(p+1), for n >= 4.

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Sat Sep 13 03:00:00 EDT 2003
KEYWORD

nonn,new

nonn

AUTHOR

Clark Kimberling, (ck6(AT)evansville.edu)

#2 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

a(n)=a(n-1)+a(m), where m=2n-2-2^(p+1), and 2^p<n-1<=2^(p+1), for n >= 4.

KEYWORD

nonn,new

nonn

AUTHOR

Clark Kimberling, ck6@cedar.(AT)evansville.edu

#1 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

a(n)=a(n-1)+a(m), where m=2n-2-2^(p+1), and 2^p<n-1<=2^(p+1), for n>=4.

DATA

1, 3, 3, 6, 12, 15, 21, 36, 72, 75, 81, 96, 132, 207, 303, 510, 1020, 1023, 1029, 1044, 1080, 1155, 1251, 1458, 1968, 2991, 4035, 5190, 6648, 9639, 14829, 24468, 48936, 48939, 48945, 48960, 48996, 49071, 49167, 49374, 49884

OFFSET

1,2

KEYWORD

nonn

AUTHOR

Clark Kimberling, [email protected]

STATUS

approved