login

Revision History for A049768

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = Sum_{k = 1..n} T(n,k), where array T is A049767.
(history; published version)
#16 by Charles R Greathouse IV at Thu Sep 08 08:44:58 EDT 2022
PROG

(MAGMAMagma) [&+[Modexp(k, 2, n) + Modexp(n, 2, k): k in [1..n]]: n in [1..50]]; // G. C. Greubel, Dec 13 2019

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#15 by Susanna Cuyler at Sat Dec 14 19:22:27 EST 2019
STATUS

proposed

approved

#14 by G. C. Greubel at Fri Dec 13 16:37:14 EST 2019
STATUS

editing

proposed

#13 by G. C. Greubel at Fri Dec 13 16:35:57 EST 2019
LINKS

G. C. Greubel, <a href="/A049768/b049768.txt">Table of n, a(n) for n = 1..1000</a>

MATHEMATICA

Table[Sum[PowerMod[k, 2, n] + PowerMod[n, 2, k], {k, n}], {n, 50}] (* G. C. Greubel, Dec 13 2019 *)

PROG

(PARI) T(n, k) = lift(Mod(k, n)^2) + lift(Mod(n, k)^2);

vector(50, n, sum(k=1, n, T(n, k)) ) \\ G. C. Greubel, Dec 13 2019

(MAGMA) [&+[Modexp(k, 2, n) + Modexp(n, 2, k): k in [1..n]]: n in [1..50]]; // G. C. Greubel, Dec 13 2019

(Sage) [sum(power_mod(k, 2, n) + power_mod(n, 2, k) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Dec 13 2019

(GAP) List([1..50], n-> Sum([1..n], k-> PowerMod(k, 2, n) + PowerMod(n, 2, k)) ); # G. C. Greubel, Dec 13 2019

STATUS

approved

editing

#12 by Bruno Berselli at Thu Nov 21 04:07:30 EST 2019
STATUS

proposed

approved

#11 by Michel Marcus at Thu Nov 21 00:44:03 EST 2019
STATUS

editing

proposed

Discussion
Thu Nov 21
00:45
Petros Hadjicostas: Yes, better than mine...
#10 by Michel Marcus at Thu Nov 21 00:43:56 EST 2019
CROSSREFS

Cf. Row sums of A049767.

STATUS

proposed

editing

Discussion
Thu Nov 21
00:44
Michel Marcus: ok ?
#9 by Petros Hadjicostas at Wed Nov 20 17:32:31 EST 2019
STATUS

editing

proposed

#8 by Petros Hadjicostas at Wed Nov 20 17:31:24 EST 2019
CROSSREFS

Cf. A049767.

#7 by Petros Hadjicostas at Wed Nov 20 17:30:49 EST 2019
MAPLE

seq(add((k^2 mod n) + (n^2 mod k), k = 1 .. n), n = 1 .. 50); # Petros Hadjicostas, Nov 20 2019