(MAGMAMagma) I:=[0, 5, 7, 8]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 16 2012
(MAGMAMagma) I:=[0, 5, 7, 8]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 16 2012
editing
approved
Numbers m such that Lucas(m) mod 3 = 2. - Bruno Berselli, Oct 19 2017
G.f.: x^2*(5+2*x+x^2)/((1-x)^2*(1+x+x^2)). [_- _Colin Barker_, May 14 2012]
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. [_- _Vincenzo Librandi_, May 16 2012]
a(n) = (24*n - 12 + 3*cos(2*n*Pi/3) - 7*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k3*k) = 8k8*k-1, a(3k3*k-1) = 8k8*k-3, a(3k3*k-2) = 8k8*k-8. (End)
Select[Range[0, 300], MemberQ[{0, 5, 7}, Mod[#, 8]] &] (* Vincenzo Librandi, May 16 2012 *)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
0, 5, 7, 8, 13, 15, 16, 21, 23, 24, 29, 31, 32, 37, 39, 40, 45, 47, 48, 53, 55, 56, 61, 63, 64, 69, 71, 72, 77, 79, 80, 85, 87, 88, 93, 95, 96, 101, 103, 104, 109, 111, 112, 117, 119, 120, 125, 127, 128, 133, 135, 136, 141, 143, 144, 149, 151, 152, 157, 159
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. [Vincenzo Librandi, May 16 2012]
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-12+3*cos(2*n*Pi/3)-7*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-8. (End)
A047477:=n->(24*n-12+3*cos(2*n*Pi/3)-7*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047477(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
Select[Range[0, 300], MemberQ[{0, 5, 7}, Mod[#, 8]]&] (* Vincenzo Librandi, May 16 2012 *)
approved
editing
<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
<a href="/index/Rea#recLCCRec">Index to sequences with linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
editing
approved