login

Revision History for A042244

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Numerators of continued fraction convergents to sqrt(648).
(history; published version)
#14 by Charles R Greathouse IV at Thu Sep 08 08:44:55 EDT 2022
PROG

(MAGMAMagma) I:=[25, 51, 280, 1731, 8935, 19601, 988985, 1997571, 10976840, 67858611, 350269895, 768398401]; [n le 12 select I[n] else 39202*Self(n-6)-Self(n-12): n in [1..30]]; // Vincenzo Librandi, Nov 19 2013

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#13 by Charles R Greathouse IV at Sat Jun 13 00:49:40 EDT 2015
LINKS

<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,39202,0,0,0,0,0,-1).

Discussion
Sat Jun 13
00:49
OEIS Server: https://oeis.org/edit/global/2439
#12 by Charles R Greathouse IV at Fri Jun 12 15:24:26 EDT 2015
LINKS

<a href="/index/Rea#recLCCRec">Index to sequences with linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,39202,0,0,0,0,0,-1).

Discussion
Fri Jun 12
15:24
OEIS Server: https://oeis.org/edit/global/2436
#11 by Bruno Berselli at Thu Nov 21 03:21:37 EST 2013
STATUS

editing

approved

#10 by Bruno Berselli at Thu Nov 21 03:21:33 EST 2013
FORMULA

G.f.: -(x^11 -25*x^10 + 51*x^9 - + 280*x^8 2 + 1731*x^7 -3 + 8935*x^6 -4 + 19601*x^5 -+ 8935*x^4 6 - 1731*x^3 -7 + 280*x^2 8 - 51*x -^9 + 25)/(*x^10 - x^12 11)/(1 - 39202*x^6 +1 x^12). - Vincenzo Librandi, Nov 19 2013

MATHEMATICA

Numerator[Convergents[Sqrt[648], 30]] (* or *) CoefficientList[Series[-(x^11 - 25 x^10 + 51 x^9 - + 280 x^8 2 + 1731 x^7 - 3 + 8935 x^6 - 4 + 19601 x^5 - + 8935 x^4 6 - 1731 x^3 - 7 + 280 x^2 8 - 51 x - ^9 + 25)/( x^10 - x^12 11)/(1 - 39202 x^6 + 1x^12), {x, 0, 20}], x] (* Vincenzo Librandi, Nov 19 2013 *)

PROG

(MAGMA) I:=[25, 51, 280, 1731, 8935, 19601, 988985, 1997571, 10976840, 67858611, 350269895, 768398401]; [n le 12 select I[n] else 39202*Self(n-6)-Self(n-12): n in [1..30]]; // Vincenzo Librandi, Nov 19 2013

STATUS

approved

editing

#9 by Bruno Berselli at Thu Nov 21 03:12:19 EST 2013
STATUS

proposed

approved

#8 by Vincenzo Librandi at Tue Nov 19 13:49:33 EST 2013
STATUS

editing

proposed

#7 by Vincenzo Librandi at Tue Nov 19 13:49:14 EST 2013
FORMULA

G.f.: -(x^11 -25*x^10 +51*x^9 -280*x^8 +1731*x^7 -8935*x^6 -19601*x^5 -8935*x^4 -1731*x^3 -280*x^2 -51*x -25)/(x^12 -39202*x^6 +1). - Vincenzo Librandi, Nov 19 2013

MATHEMATICA

Numerator[Convergents[Sqrt[648], 30]] (* _or *) CoefficientList[Series[-(x^11 - 25 x^10 + 51 x^9 - 280 x^8 + 1731 x^7 - 8935 x^6 - 19601 x^5 - 8935 x^4 - 1731 x^3 - 280 x^2 - 51 x - 25)/(x^12 - 39202 x^6 + 1), {x, 0, 20}], x] (* _Vincenzo Librandi_, Nov 19 2013 *)

#6 by Vincenzo Librandi at Tue Nov 19 13:41:36 EST 2013
LINKS

<a href="/index/Rea#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,39202,0,0,0,0,0,-1).

#5 by Vincenzo Librandi at Tue Nov 19 13:40:18 EST 2013
LINKS

Vincenzo Librandi, <a href="/A042244/b042244.txt">Table of n, a(n) for n = 0..200</a>

FORMULA

a(n) = 39202*a(n-6) - a(n-12). - Vincenzo Librandi, Nov 19 2013

MATHEMATICA

Numerator[Convergents[Sqrt[648], 30]] (* Vincenzo Librandi, Nov 19 2013 *)

PROG

(MAGMA) I:=[25, 51, 280, 1731, 8935, 19601, 988985, 1997571, 10976840, 67858611, 350269895, 768398401]; [n le 12 select I[n] else 39202*Self(n-6)-Self(n-12): n in [1..30]]; // Vincenzo Librandi, Nov 19 2013

KEYWORD

nonn,cofr,frac,easy

STATUS

approved

editing