login

Revision History for A041438

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Numerators of continued fraction convergents to sqrt(235).
(history; published version)
#12 by Charles R Greathouse IV at Sat Jun 13 00:49:24 EDT 2015
LINKS

<a href="/index/Rec#order_04">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (0,92,0,-1).

Discussion
Sat Jun 13
00:49
OEIS Server: https://oeis.org/edit/global/2439
#11 by Bruno Berselli at Sat Nov 02 05:12:36 EDT 2013
STATUS

editing

approved

#10 by Bruno Berselli at Sat Nov 02 05:12:29 EDT 2013
MATHEMATICA

Numerator[Convergents[Sqrt[235], 30]] (* or *) CoefficientList[Series[-(x^3 - 15 x^2 - + 46 x - + 15)/( x^2 - x^4 3)/(1 - 92 x^2 + 1x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 02 2013 *)

#9 by Bruno Berselli at Sat Nov 02 05:08:44 EDT 2013
FORMULA

G.f.; -: (x^3-15*x^2- + 46*x- + 15)/(*x^2 - x^43) / (1 - 92*x^2 +1 x^4). - Vincenzo Librandi, Nov 02 2013

MATHEMATICA

Numerator[Convergents[Sqrt[235], 30]] (* or *) CoefficientList[Series[-(x^3 - 15 x^2 - 46 x - 15)/(x^4 -92 x^2 + 1), {x, 0, 30}], x] (* or *) Numerator[Convergents[Sqrt[235], 30]] (* __Vincenzo Librandi_, Nov 02 2013 *)

Discussion
Sat Nov 02
05:09
Bruno Berselli: Ok, now it is ok.
#8 by Bruno Berselli at Sat Nov 02 05:05:03 EDT 2013
LINKS

<a href="/index/Rec#order_04">Index to sequences with linear recurrences with constant coefficients</a>, signature (0,92,0,-1).

MATHEMATICA

LinearRecurrence[{0, 92, 0, -1}, {15, 46, 1395, 4231}, 20] (* Bruno Berselli, Nov 02 2013 *)

#7 by Bruno Berselli at Sat Nov 02 04:47:33 EDT 2013
STATUS

proposed

editing

Discussion
Sat Nov 02
05:00
Bruno Berselli: Missing signature ---
#6 by Vincenzo Librandi at Sat Nov 02 03:42:39 EDT 2013
STATUS

editing

proposed

Discussion
Sat Nov 02
04:47
Bruno Berselli: Vincenzo, your contribution is being completed.
#5 by Vincenzo Librandi at Sat Nov 02 03:41:40 EDT 2013
LINKS

Vincenzo Librandi, <a href="/A041438/b041438.txt">Table of n, a(n) for n = 0..200</a>

FORMULA

G.f.; -(x^3-15*x^2-46*x-15)/(x^4-92*x^2+1). - Vincenzo Librandi, Nov 02 2013

MATHEMATICA

CoefficientList[Series[-(x^3 - 15 x^2 - 46 x - 15)/(x^4 -92 x^2 + 1), {x, 0, 30}], x] (* or *) Numerator[Convergents[Sqrt[235], 30]] (* Vincenzo Librandi, Nov 02 2013 *)

KEYWORD

nonn,cofr,frac,easy

STATUS

approved

editing

Discussion
Sat Nov 02
03:42
Vincenzo Librandi: I would ask Mr. Berselli not to block, as usual, my contribution. If it could do would intervene subsequently also with the other sequences (more than one thousand) of the same type. Thank you.
#4 by Russ Cox at Fri Mar 30 16:48:05 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com)_.

Discussion
Fri Mar 30
16:48
OEIS Server: https://oeis.org/edit/global/110
#3 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
KEYWORD

nonn,cofr,easy,new

AUTHOR

N. J. A. Sloane (njas(AT)research.att.com).