login

Revision History for A039768

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Numbers k such that gcd(phi(k), k-1) = number of divisors of (k-1).
(history; published version)
#10 by Alois P. Heinz at Fri Oct 25 21:31:04 EDT 2019
STATUS

proposed

approved

#9 by Jon E. Schoenfield at Fri Oct 25 21:23:03 EDT 2019
STATUS

editing

proposed

#8 by Jon E. Schoenfield at Fri Oct 25 21:23:00 EDT 2019
NAME

GCDNumbers k such that gcd(phi(a(n)),a(nk), k-1) = number of divisors of (a(n)k-1).

STATUS

approved

editing

#7 by Alois P. Heinz at Wed Aug 28 16:36:09 EDT 2019
STATUS

proposed

approved

#6 by Amiram Eldar at Wed Aug 28 16:30:03 EDT 2019
STATUS

editing

proposed

#5 by Amiram Eldar at Wed Aug 28 16:13:02 EDT 2019
LINKS

Amiram Eldar, <a href="/A039768/b039768.txt">Table of n, a(n) for n = 1..10000</a>

MATHEMATICA

aQ[n_] := GCD[EulerPhi[n], n - 1] == DivisorSigma[0, n - 1]; Select[Range[2, 2110], aQ] (* Amiram Eldar, Aug 28 2019 *)

STATUS

approved

editing

#4 by Russ Cox at Fri Mar 30 17:20:56 EDT 2012
AUTHOR

Olivier Gerard (olivier.gerard(AT)gmail.com)

Olivier GĂ©rard

Discussion
Fri Mar 30
17:20
OEIS Server: https://oeis.org/edit/global/117
#3 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
KEYWORD

nonn,easy,new

AUTHOR

Olivier Gerard (ogerardolivier.gerard(AT)ext.jussieugmail.frcom)

#2 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
CROSSREFS
KEYWORD

nonn,easy,new

AUTHOR

Olivier Gerard (ogerard@(AT)ext.jussieu.fr)

#1 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

GCD(phi(a(n)),a(n)-1) = number of divisors of (a(n)-1).

DATA

2, 3, 105, 133, 153, 185, 345, 377, 425, 585, 637, 665, 777, 805, 825, 873, 897, 905, 949, 1017, 1090, 1113, 1209, 1225, 1261, 1305, 1309, 1385, 1449, 1525, 1545, 1573, 1645, 1681, 1785, 1813, 1833, 1865, 1885, 1957, 1981, 2009, 2057, 2077, 2105

OFFSET

1,1

EXAMPLE

phi(105)=48, gcd(48,104)=8, 104 is divisible by {1,2,4,8,13,26,52,104}.

CROSSREFS
KEYWORD

nonn,easy

AUTHOR

Olivier Gerard ([email protected])

STATUS

approved