proposed
approved
proposed
approved
editing
proposed
GCDNumbers k such that gcd(phi(a(n)),a(nk), k-1) = number of divisors of (a(n)k-1).
approved
editing
proposed
approved
editing
proposed
Amiram Eldar, <a href="/A039768/b039768.txt">Table of n, a(n) for n = 1..10000</a>
aQ[n_] := GCD[EulerPhi[n], n - 1] == DivisorSigma[0, n - 1]; Select[Range[2, 2110], aQ] (* Amiram Eldar, Aug 28 2019 *)
approved
editing
Olivier Gerard (olivier.gerard(AT)gmail.com)
nonn,easy,new
Olivier Gerard (ogerardolivier.gerard(AT)ext.jussieugmail.frcom)
GCD(phi(a(n)),a(n)-1) = number of divisors of (a(n)-1).
2, 3, 105, 133, 153, 185, 345, 377, 425, 585, 637, 665, 777, 805, 825, 873, 897, 905, 949, 1017, 1090, 1113, 1209, 1225, 1261, 1305, 1309, 1385, 1449, 1525, 1545, 1573, 1645, 1681, 1785, 1813, 1833, 1865, 1885, 1957, 1981, 2009, 2057, 2077, 2105
1,1
phi(105)=48, gcd(48,104)=8, 104 is divisible by {1,2,4,8,13,26,52,104}.
nonn,easy
Olivier Gerard ([email protected])
approved