reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, <a href="https://pubs.acs.org/doi/pdfplus/10.1021/ci00009a021">Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, </a>, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Polyhex.html">Polyhex</a>.
proposed
editing
editing
proposed
Vincenzo Librandi, <a href="/A039658/b039658.txt">Table of n, a(n) for n = 1..1000</a>
proposed
editing
editing
proposed
In Cyvin et al. (1992), it is defined through eq. (22), p. 535. We have a(n) = Sum_{1 <= i <= 1..n-1} M(i)*M(n-i), where M(2*n) = M(2*n-1) = A007317(n) for n >= 1.
G.f.: (1+x)[*(1 -3x 3*x^2 - sqrt(1 -6x 6*x^2 +5x 5*x^4)])/[2x(2*x^2*(1-x)] ) (eq. (9), p. 1175, in Cyvin et al. (1994)).
For n >= 1, a(n) = Sum_{1 <= i <= 1..n-1} A007317(floor((i+1)/2)) * A007317(floor((n-i+1)/2)). - Petros Hadjicostas, Jan 13 2019
proposed
editing
editing
proposed
S. J. Cyvin et al., Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
S. J. Cyvin et al., Enumeration and classification of certain polygonal systems...: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
proposed
editing