login

Revision History for A039658

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Related to enumeration of edge-rooted catafusenes.
(history; published version)
#31 by Bruno Berselli at Mon Jan 14 04:34:21 EST 2019
STATUS

reviewed

approved

#30 by Michel Marcus at Mon Jan 14 03:08:05 EST 2019
STATUS

proposed

reviewed

#29 by Joerg Arndt at Mon Jan 14 03:06:34 EST 2019
STATUS

editing

proposed

#28 by Joerg Arndt at Mon Jan 14 03:05:56 EST 2019
LINKS

S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, <a href="https://pubs.acs.org/doi/pdfplus/10.1021/ci00009a021">Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, </a>, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Polyhex.html">Polyhex</a>.

STATUS

proposed

editing

Discussion
Mon Jan 14
03:06
Joerg Arndt: Repaired two links.
#27 by Vincenzo Librandi at Mon Jan 14 02:19:37 EST 2019
STATUS

editing

proposed

#26 by Vincenzo Librandi at Mon Jan 14 02:18:31 EST 2019
LINKS

Vincenzo Librandi, <a href="/A039658/b039658.txt">Table of n, a(n) for n = 1..1000</a>

STATUS

proposed

editing

#25 by Jon E. Schoenfield at Sun Jan 13 22:19:03 EST 2019
STATUS

editing

proposed

#24 by Jon E. Schoenfield at Sun Jan 13 22:18:56 EST 2019
COMMENTS

In Cyvin et al. (1992), it is defined through eq. (22), p. 535. We have a(n) = Sum_{1 <= i <= 1..n-1} M(i)*M(n-i), where M(2*n) = M(2*n-1) = A007317(n) for n >= 1.

FORMULA

G.f.: (1+x)[*(1 -3x 3*x^2 - sqrt(1 -6x 6*x^2 +5x 5*x^4)])/[2x(2*x^2*(1-x)] ) (eq. (9), p. 1175, in Cyvin et al. (1994)).

For n >= 1, a(n) = Sum_{1 <= i <= 1..n-1} A007317(floor((i+1)/2)) * A007317(floor((n-i+1)/2)). - Petros Hadjicostas, Jan 13 2019

AUTHOR
STATUS

proposed

editing

#23 by Michel Marcus at Sun Jan 13 17:20:29 EST 2019
STATUS

editing

proposed

#22 by Michel Marcus at Sun Jan 13 17:20:07 EST 2019
REFERENCES

S. J. Cyvin et al., Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.

S. J. Cyvin et al., Enumeration and classification of certain polygonal systems...: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.

STATUS

proposed

editing

Discussion
Sun Jan 13
17:20
Michel Marcus: so 2 refs can go now