reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
editing
proposed
For n >= 0, A_0^n= is the least nonnegative integer not in {A_j^n: 0 <= i < n, j >= 0, A_1^n = 2A_0^n + n, A_j^n = 3A_{j-1}^n - A_{j-2}^n (j >= 2).
Top left corner of array is:
1 , 3 , 8 , 21 , 55 144 , ...
2 , 6 , 16 , 42 , 110 , ...
4 , 11 , 29 , 76 , 199 , ...
5 , 14 , 37 , 97 , 254 , ...
approved
editing
proposed
approved
editing
proposed
A. S. Fraenkel, <a href="httphttps://www.wisdom.weizmann.acdoi.il/~fraenkel/Papersorg/ans110.ps1016/S0304-3975(01)00070-6">Arrays, numeration systems and Frankenstein games</a>, Theoret. Comput. Sci. 282 (2002), 271-284; <a href="http://www.wisdom.weizmann.ac.il/~fraenkel
A. S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
A. S. Fraenkel, <a href="https://doi.org/10.1016/S0304-3975(00)00062-1">Recent results and questions in combinatorial game complexities</a>, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
approved
editing