login

Revision History for A028379

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = 6*(n+1)*(2*n+6)!/((n+3)!*(n+5)!).
(history; published version)
#25 by Charles R Greathouse IV at Thu Sep 08 08:44:50 EDT 2022
PROG

(MAGMAMagma) [6*(n+1)*Factorial(2*n+6)/(Factorial(n+3)*Factorial(n+5)): n in [-1..40]]; // Vincenzo Librandi, Jan 15 2019

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#24 by N. J. A. Sloane at Sun Jan 20 06:50:52 EST 2019
STATUS

proposed

approved

#23 by Vincenzo Librandi at Tue Jan 15 01:31:15 EST 2019
STATUS

editing

proposed

#22 by Vincenzo Librandi at Tue Jan 15 01:30:59 EST 2019
LINKS

Vincenzo Librandi, <a href="/A028379/b028379.txt">Table of n, a(n) for n = -1..1000</a>

#21 by Vincenzo Librandi at Tue Jan 15 01:23:57 EST 2019
DATA

0, 6, 28, 108, 396, 1430, 5148, 18564, 67184, 244188, 891480, 3268760, 12034980, 44482230, 165002460, 614106900, 2292665760, 8583849780, 32223863880, 121267584360, 457412818200, 1729020452796, 6548744132568, 24849948274088, 94460672942496, 359656297841400

FORMULA

a(n) = 3*A120989(n+1) + A003517(n+1). - Colin Defant, Jan 14 2019

MATHEMATICA

Table[6 (n + 1) (2 n + 6)! / ((n + 3)! (n + 5)!), {n, -1, 25}] (* Vincenzo Librandi, Jan 15 2019 *)

PROG

(MAGMA) [6*(n+1)*Factorial(2*n+6)/(Factorial(n+3)*Factorial(n+5)): n in [-1..40]]; // Vincenzo Librandi, Jan 15 2019

CROSSREFS

Equals 3*A120989(n+1) + A003517(n+1). - Colin Defant, Jan 14 2019

Cf. A003517, A120989.

STATUS

proposed

editing

#20 by Jon E. Schoenfield at Mon Jan 14 23:34:06 EST 2019
STATUS

editing

proposed

Discussion
Mon Jan 14
23:34
Jon E. Schoenfield: (sorry, in two of three cases)  :-)
#19 by Jon E. Schoenfield at Mon Jan 14 23:33:29 EST 2019
COMMENTS

a(n) is the number of permutations pi of [n+4] such that s(pi) is one of 132456...(n+4), 231456...(n+4), 312456...(n+4), or 321456...(n+4) and s denotes West's stack-sorting map. -_ _Colin Defant_, Jan 14 2019

FORMULA

G.f.: (2 - 9*x + 6*x^2 + 2*x^3 + (5*x-2)*sqrt(1-4*x))/(x^4) = 6*x + 14*x^2*G(0) ; G(k) = 1 + 1/(k + 1 - 2*x*(k+1)*(k+2)*(2*k+9)/(2*x*(k+2)*(2*k+9) + (k+7)/G(k+1))); (continued fraction, 3-step ). - Sergei N. Gladkovskii, Jan 08 2012

-(n+4)*(n-1)*a(n) + 2*n*(2*n+3)*a(n-1) = 0, n > 0. - R. J. Mathar, Dec 15 2015

G.f.: x*C(x)^6 + 3*(1+C(x))C(x)^4, where C(x) =[ (1-sqrt(1-4x)])/(2x) is the Catalan function. - Colin Defant, Jan 14 2019

CROSSREFS

Equals 3*A120989(n+1) + A003517(n+1) . -_ _Colin Defant_, Jan 14 2019

STATUS

proposed

editing

Discussion
Mon Jan 14
23:34
Jon E. Schoenfield: Corrected your signatures (there was a missing space between the dash and your name in each case).
#18 by Colin Defant at Mon Jan 14 20:37:45 EST 2019
STATUS

editing

proposed

#17 by Colin Defant at Mon Jan 14 18:15:54 EST 2019
COMMENTS

a(n) is the number of permutations pi of [n+4] such that s(pi) is one of 132456...(n+4), 231456...(n+4), 312456...(n+4), or 321456...(n+4) and s denotes West's stack-sorting map. -_Colin Defant_, Jan 14 2019

CROSSREFS

Equals 3*A120989(n+1)+A003517(n+1) -_Colin Defant_, Jan 14 2019

STATUS

proposed

editing

#16 by Colin Defant at Mon Jan 14 18:14:35 EST 2019
STATUS

editing

proposed