login

Revision History for A025151

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of partitions of n into distinct parts >= 6.
(history; published version)
#24 by Michael De Vlieger at Thu Nov 09 12:15:42 EST 2023
STATUS

proposed

approved

#23 by Michel Marcus at Thu Nov 09 12:15:10 EST 2023
STATUS

editing

proposed

#22 by Michel Marcus at Thu Nov 09 12:15:06 EST 2023
FORMULA

G.f.: product_Product_{j>=6..infinity} (1+x^j). - R. J. Mathar, Jul 31 2008

STATUS

proposed

editing

#21 by Michael De Vlieger at Thu Nov 09 12:12:51 EST 2023
STATUS

editing

proposed

#20 by Michael De Vlieger at Thu Nov 09 12:12:50 EST 2023
LINKS

Kevin Beanland and Hung Viet Chu, <a href="https://arxiv.org/abs/2311.01926">On Schreier-type Sets, Partitions, and Compositions</a>, arXiv:2311.01926 [math.CO], 2023.

STATUS

approved

editing

#19 by Susanna Cuyler at Tue Nov 24 10:23:53 EST 2020
STATUS

proposed

approved

#18 by Ilya Gutkovskiy at Tue Nov 24 08:56:11 EST 2020
STATUS

editing

proposed

#17 by Ilya Gutkovskiy at Tue Nov 24 08:53:46 EST 2020
FORMULA

G.f.: Sum_{k>=0} x^(k*(k + 11)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020

STATUS

approved

editing

#16 by Bruno Berselli at Mon Aug 29 09:26:20 EDT 2016
STATUS

editing

approved

#15 by Bruno Berselli at Mon Aug 29 09:26:16 EDT 2016
MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i - 5)(i + 6)/2 < n, 0, Sum[b[n - i j, i - 1], {j, 0, Min[1, n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *)

a[n_] := b[n, n];

Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

STATUS

proposed

editing