login

Revision History for A022370

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Fibonacci sequence beginning 2, 16.
(history; published version)
#20 by Alois P. Heinz at Sun Aug 27 18:29:33 EDT 2017
STATUS

editing

approved

#19 by Alois P. Heinz at Sun Aug 27 18:29:06 EDT 2017
FORMULA

a(n) = 2 * A022098(n). - Alois P. Heinz, Aug 27 2017

CROSSREFS

Cf. A022098.

STATUS

proposed

editing

#18 by G. C. Greubel at Sun Aug 27 15:51:44 EDT 2017
STATUS

editing

proposed

#17 by G. C. Greubel at Sun Aug 27 15:51:14 EDT 2017
LINKS

G. C. Greubel, <a href="/A022370/b022370.txt">Table of n, a(n) for n = 0..1000</a>

FORMULA

G.f.: (2+14x14*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008

a(n) = 2*(Fibonacci(n+2) + 6*Fibonacci(n)). - G. C. Greubel, Aug 27 2017

PROG

(PARI) for(n=0, 50, print1(2*(fibonacci(n+2) + 6*fibonacci(n)), ", ")) \\ G. C. Greubel, Aug 27 2017

STATUS

approved

editing

#16 by Ray Chandler at Thu Jul 30 17:52:19 EDT 2015
STATUS

editing

approved

#15 by Ray Chandler at Thu Jul 30 17:52:16 EDT 2015
LINKS

<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1).

STATUS

approved

editing

#14 by Alois P. Heinz at Sun Dec 28 16:14:55 EST 2014
STATUS

proposed

approved

#13 by Jon E. Schoenfield at Sun Dec 28 16:07:30 EST 2014
STATUS

editing

proposed

#12 by Jon E. Schoenfield at Sun Dec 28 16:07:25 EST 2014
NAME

Fibonacci sequence beginning 2 , 16.

FORMULA

G.f.: (2+14x)/(1-x-x^2). [From _- _Philippe Deléham_, Nov 19 2008]

MATHEMATICA

a={}; b=2; c=16; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 4!}]; a [From _(* _Vladimir Joseph Stephan Orlovsky_, Sep 18 2008] *)

AUTHOR
STATUS

approved

editing

#11 by Charles R Greathouse IV at Thu Nov 21 12:46:14 EST 2013
MATHEMATICA

LinearRecurrence[{1, 1}, {2, 16}, 40] (* From _Harvey P. Dale, _, Aug 11 2011 *)

Discussion
Thu Nov 21
12:46
OEIS Server: https://oeis.org/edit/global/2062