(MAGMAMagma) MolienSeries(CoxeterGroup("F4")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
(MAGMAMagma) MolienSeries(CoxeterGroup("F4")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
(MAGMAMagma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
reviewed
approved
proposed
reviewed
editing
proposed
<a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 1, 0, -1, 1, -2, 1, -1, 0, 1, 0, 1, -1).
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))) \\ G. C. Greubel, Sep 08 2019
(Sage)
def A008670_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))).list()
A008670_list(70) # G. C. Greubel, Sep 08 2019
approved
editing
editing
approved
G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)). [corrected Corrected by Ralf Stephan, Apr 29 2014]
a(n) ~ (1/432)*n^3. - Ralf Stephan, Apr 29 2014
a(n) = (120*floor(n/6)^3 + 60*(m+7)*floor(n/6)^2 + 2*(m^5-15*m^4+75*m^3-135*m^2+134*m+240)*floor(n/6) + 3*(m^5-15*m^4+75*m^3-135*m^2+84*m+70) + (m^5-15*m^4+75*m^3-135*m^2+44*m+30)*(-1)^floor(n/6))/240 where m = (n mod 6). - Luce ETIENNE, Aug 14 2018
proposed
editing
editing
proposed
G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
proposed
editing
editing
proposed