login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378153
G.f. A(x) satisfies A(x) = 1 + (x * (1+x))^3 * A(x)^2.
1
1, 0, 0, 1, 3, 3, 3, 12, 30, 45, 75, 192, 436, 798, 1554, 3542, 7740, 15543, 32183, 70794, 153252, 321431, 684123, 1491504, 3232672, 6928779, 14957787, 32615388, 70991040, 153985890, 335256886, 733206840, 1603258134, 3503385568, 7671749664, 16837946850
OFFSET
0,5
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(3*k,n-3*k) * C(k), where C(k) are the Catalan numbers (A000108).
G.f.: 2/(1 + sqrt(1 - 4*(x*(1+x))^3)).
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(3*k, n-3*k)*binomial(2*k, k)/(k+1));
CROSSREFS
Cf. A000108.
Sequence in context: A052900 A024947 A291407 * A147823 A341211 A335518
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 18 2024
STATUS
approved