login
A378152
G.f. A(x) satisfies A(x) = 1 + (x * (1+x) * A(x))^4.
1
1, 0, 0, 0, 1, 4, 6, 4, 5, 32, 112, 224, 302, 488, 1564, 4872, 11034, 19664, 37128, 95824, 266659, 635740, 1306682, 2706524, 6503711, 16794992, 40634744, 90066416, 197648134, 465436936, 1152867388, 2790870536, 6434526866, 14640368240, 34415925816, 83509570992
OFFSET
0,6
FORMULA
a(n) = Sum_{k=0..floor(n/4)} binomial(4*k,n-4*k) * binomial(4*k,k)/(3*k+1).
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(4*k, n-4*k)*binomial(4*k, k)/(3*k+1));
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 18 2024
STATUS
approved