OFFSET
4,1
COMMENTS
Row n lists in ascending order all numbers k whose arithmetic derivative k' [A003415(k)] is equal to the n-th factorial, n! = A000142(n), and that have more than two prime factors with multiplicity, i.e., A001222(k) > 2. Rows of length zero are simply omitted, i.e., when A377986(n) = 0.
Of the initial 32 terms, 16 are odd, and of those 16 odd terms, 11 are squarefree. There are only odd terms on rows 14 and 15, why?
EXAMPLE
(no solutions for n = 1..3)
4: 20; (20 = 2*2*5, so 20' = 4'*5 + 5'*4 = 4*5 + 1*4 = 24 = 4!)
5: 116; (116 = 2*2*29, so 116' = 4*29 + 1*4 = 120 = 5!)
6: 716; (716 = 2*2*179, so 716' = 4*179 + 1*4 = 720 = 6!)
7: 2512, 5036;
8: 40316;
9: 84672, 176364; (2^6 * 3^3 * 7^2 and 2^2 * 3^3 * 23 * 71)
10: 1390500, 1782108, 3628773, 3628796, 10529953, 12258673;
11: (no solutions)
12: 76944384, 5338541473, 8944397353, 11690698969;
13: 1236868096, 1849666112, 3096111708, 1004929973233;
14: 54465962625, 1657198101073, 6791831913289;
15: 1307674367996, 5739085040351, 21522396453889, 63577408859233, 104747513922049, 287711613106993, 626768279186209;
etc.
PROG
CROSSREFS
KEYWORD
nonn,tabf,hard,more,new
AUTHOR
Antti Karttunen, Nov 21 2024
STATUS
approved