login
A377987
Irregular triangle giving on row n all those antiderivatives k of the n-th factorial, for which bigomega(k) > 2.
3
20, 116, 716, 2512, 5036, 40316, 84672, 176364, 1390500, 1782108, 3628773, 3628796, 10529953, 12258673, 76944384, 5338541473, 8944397353, 11690698969, 1236868096, 1849666112, 3096111708, 1004929973233, 54465962625, 1657198101073, 6791831913289, 1307674367996, 5739085040351, 21522396453889, 63577408859233, 104747513922049, 287711613106993, 626768279186209
OFFSET
4,1
COMMENTS
Row n lists in ascending order all numbers k whose arithmetic derivative k' [A003415(k)] is equal to the n-th factorial, n! = A000142(n), and that have more than two prime factors with multiplicity, i.e., A001222(k) > 2. Rows of length zero are simply omitted, i.e., when A377986(n) = 0.
Of the initial 32 terms, 16 are odd, and of those 16 odd terms, 11 are squarefree. There are only odd terms on rows 14 and 15, why?
EXAMPLE
Row n k such that A003415(k) = n! and A001222(k) > 2.
(no solutions for n = 1..3)
4: 20; (20 = 2*2*5, so 20' = 4'*5 + 5'*4 = 4*5 + 1*4 = 24 = 4!)
5: 116; (116 = 2*2*29, so 116' = 4*29 + 1*4 = 120 = 5!)
6: 716; (716 = 2*2*179, so 716' = 4*179 + 1*4 = 720 = 6!)
7: 2512, 5036;
8: 40316;
9: 84672, 176364; (2^6 * 3^3 * 7^2 and 2^2 * 3^3 * 23 * 71)
10: 1390500, 1782108, 3628773, 3628796, 10529953, 12258673;
11: (no solutions)
12: 76944384, 5338541473, 8944397353, 11690698969;
13: 1236868096, 1849666112, 3096111708, 1004929973233;
14: 54465962625, 1657198101073, 6791831913289;
15: 1307674367996, 5739085040351, 21522396453889, 63577408859233, 104747513922049, 287711613106993, 626768279186209;
etc.
Note that although A003415(9) = 6 = 3!, it is not included in this table as 9 is a semiprime, with A001222(9) = 2.
PROG
(PARI)
\\ Use the programs given in A377987 and A376410.
\\ the data needs also to be post-processed (sorted) with
\\ sols = sort_solutions_vector(readvec("a_terms_for_A377987_unsorted.txt"));
\\ using these functions:
sort_solutions_vector(v) = vecsort(v, sort_by_A003415_and_magnitude);
sort_by_A003415_and_magnitude(x, y) = { my(s = sign(A003415(x)-A003415(y))); if(!s, sign(x-y), s); };
CROSSREFS
Cf. A000142, A001222, A003415, A377986 (row lengths).
Cf. also A366890, A369240, A377992.
Sequence in context: A271494 A220928 A206368 * A258667 A357042 A299965
KEYWORD
nonn,tabf,hard,more,new
AUTHOR
Antti Karttunen, Nov 21 2024
STATUS
approved