login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377732
Numbers k such that max{d|k, d <= sqrt(k)} + min{d|k, d >= sqrt(k)} is a square.
4
3, 4, 14, 18, 20, 39, 46, 55, 60, 63, 64, 94, 114, 136, 150, 154, 155, 156, 158, 183, 203, 243, 258, 275, 291, 295, 299, 308, 315, 320, 323, 324, 328, 334, 444, 446, 490, 544, 558, 570, 579, 580, 583, 584, 588, 594, 598, 600, 695, 710, 718, 799, 855, 878, 903, 904, 938, 943, 955, 959, 975, 978, 979, 988, 999
OFFSET
1,1
COMMENTS
Numbers k such that A063655(k) = A033676(k) + A033677(k) is a square.
The square terms of this sequence are the positive numbers of the form A141046(m) = 4*m^4.
LINKS
Jean-Marie De Koninck, A. Arthur Bonkli Razafindrasoanaivolala, and Hans Schmidt Ramiliarimanana, Integers with a sum of co-divisors yielding a square, Research in Number Theory, Vol. 10, No. 2 (2024), Article 30; author's copy.
FORMULA
c * x^(3/4) / log(x) < R(x) < 2 * c * x^(3/4) / log(x) for sufficiently large x, where R(x) is the number of terms that do not exceed x, and c = A377731 (De Koninck et al., 2024).
MATHEMATICA
q[k_] := If[IntegerQ[Sqrt[k]], IntegerQ[Sqrt[2*Sqrt[k]]], Module[{d = Divisors[k], nh}, nh = Length[d]/2; IntegerQ[Sqrt[d[[nh]] + d[[nh + 1]]]]]]; Select[Range[1000], q]
PROG
(PARI) is(k) = if(issquare(k), issquare(2 * sqrtint(k)), my(d = divisors(k), nh = #d/2); issquare(d[nh] + d[nh + 1]));
(Python)
from itertools import count, islice
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A377732_gen(startvalue=1): # generator of terms >= startvalue
for k in count(max(startvalue, 1)):
d = (a:=divisors(k))[len(a)-1>>1]
if is_square(d+k//d):
yield k
A377732_list = list(islice(A377732_gen(), 30)) # Chai Wah Wu, Nov 06 2024
CROSSREFS
Subsequences: A141046 \ {0}, A377733, A377736.
Sequence in context: A282307 A282604 A281524 * A299040 A297839 A279938
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 05 2024
STATUS
approved