%I #12 Nov 15 2024 09:06:17
%S 15,490,21637,1121505,3913864295,1131238503938606,78801255302666615,
%T 5589233202595404488,29349508915133986374841,
%U 2163909235608484556362424,913865816485680423486405066750,191623400974625892978847721669762887224010
%N Number of partitions of cuban primes.
%C Number of partitions of prime numbers that are the difference of two consecutive cubes.
%C Number of partitions of primes p such that p=(3*k^2 + 1)/4 for some integer k (A121259).
%H Robert Israel, <a href="/A377045/b377045.txt">Table of n, a(n) for n = 1..153</a>
%F a(n) = A000041(A002407(n)).
%F a(n) = A000041((3*A121259(n)^2 + 1)/4).
%p R:= NULL: count:= 0:
%p for i from 1 while count < 30 do
%p p:= (i+1)^3 - i^3;
%p if isprime(p) then count:= count+1; v:= combinat:-numbpart(p); R:= R,v; fi
%p od:
%p R; # _Robert Israel_, Nov 14 2024
%t PartitionsP[Select[Table[(3k^2 + 1)/4,{k,50}],PrimeQ]]
%Y Cf. A000041, A002407, A121259.
%K nonn,changed
%O 1,1
%A _Paul F. Marrero Romero_, Oct 14 2024