login
A377045
Number of partitions of cuban primes.
1
15, 490, 21637, 1121505, 3913864295, 1131238503938606, 78801255302666615, 5589233202595404488, 29349508915133986374841, 2163909235608484556362424, 913865816485680423486405066750, 191623400974625892978847721669762887224010
OFFSET
1,1
COMMENTS
Number of partitions of prime numbers that are the difference of two consecutive cubes.
Number of partitions of primes p such that p=(3*k^2 + 1)/4 for some integer k (A121259).
LINKS
FORMULA
a(n) = A000041(A002407(n)).
a(n) = A000041((3*A121259(n)^2 + 1)/4).
MAPLE
R:= NULL: count:= 0:
for i from 1 while count < 30 do
p:= (i+1)^3 - i^3;
if isprime(p) then count:= count+1; v:= combinat:-numbpart(p); R:= R, v; fi
od:
R; # Robert Israel, Nov 14 2024
MATHEMATICA
PartitionsP[Select[Table[(3k^2 + 1)/4, {k, 50}], PrimeQ]]
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved