OFFSET
1,4
COMMENTS
There is an interesting and striking pattern in the graph of this sequence that appears at n >= 20 and appears to continue indefinitely.
There does not appear to be a corresponding pattern for other bases.
Beyond the first two terms, zeros only appear where n is a multiple of 5.
FORMULA
a(n) = 10^A055642(n) mod n. Concatenation of 1||n modulo n. - Chai Wah Wu, Oct 01 2024
EXAMPLE
For n=2: 32 mod 2 is 0.
For n=123: 124123 mod 123 is 16.
MATHEMATICA
a[n_]:=Mod[FromDigits[Join[IntegerDigits[n+1], IntegerDigits[n]]], n]; Array[a, 80] (* Stefano Spezia, Sep 18 2024 *)
PROG
(PARI) a(n) = eval(concat(Str(n+1), Str(n))) % n; \\ Michel Marcus, Sep 17 2024
(PARI) a(n) = 10*10^logint(n, 10) % n; \\ Ruud H.G. van Tol, Oct 26 2024
(Python)
def a(n): return int(str(n+1)+str(n))%n
print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Sep 17 2024
(Python)
def A376252(n): return int('1'+str(n))%n # Chai Wah Wu, Oct 01 2024
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Stuart Coe, Sep 17 2024
STATUS
approved