login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376161
Number of support Tau-tilting modules for some algebras.
1
3, 5, 12, 33, 98, 306, 990, 3289, 11154, 38454, 134368, 474810, 1693812, 6091780, 22064130, 80410185, 294647250, 1084922190, 4012165080, 14895504030, 55496654460, 207431394300, 777601790940, 2922867908298, 11013796950228, 41596652545756, 157434454904160, 597029454416724, 2268232385053096
OFFSET
0,1
COMMENTS
See Prop. A.6 in Wang's reference for the table counting Tau-tilting modules for the linear quiver modulo the relation alpha*beta = 0.
LINKS
Qi Wang, Tau-tilting finite simply connected algebras, arXiv:1910.01937 [math.RT], 2019-2022.
FORMULA
a(n) = 3*(3*n+2)*binomial(2*n+4,n+2)/(4*(2*n+1)*(2*n+3)).
a(n) = A329533(n)/(n + 1).
From Peter Luschny, Sep 13 2024: (Start)
a(n) = (3*n + 2) * [x^n] ((1 - 4*x)^(3/2) + 12*x - 2)/(4*x^2).
a(n) = A016789(n)*(3/2)*(2*n)! * [x^(2*n)] hypergeom([], [3], x^2).
a(n) = CatalanNumber(n)*(9*n + 6)/(n + 2).
a(n) = -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2).
a(n) = 2^n*(9*n + 6)*(2*n - 1)!! / (n + 2)!.
a(n) = A007054(n) * (3*n + 2) / 2.
a(n) = 6*A023999(n + 1)/(n + 2)!. (End)
MAPLE
a := n -> -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2):
seq(a(n), n = 0..28) # Peter Luschny, Sep 13 2024
MATHEMATICA
A376161[n_] := CatalanNumber[n]*(9*n + 6)/(n + 2);
Array[A376161, 30, 0] (* Paolo Xausa, Sep 14 2024 *)
PROG
(Sage)
def a(n):
return 3*(3*n+2)*binomial(2*n+4, n+2)/4/(2*n+1)/(2*n+3)
CROSSREFS
KEYWORD
nonn
AUTHOR
F. Chapoton, Sep 13 2024
STATUS
approved