login
A374509
Expansion of 1/(1 - 2*x + 5*x^2)^(7/2).
1
1, 7, 14, -42, -294, -462, 1386, 7722, 9009, -37037, -160160, -123760, 835380, 2848860, 1046520, -16550520, -45140865, 3533145, 296447690, 648593330, -393463070, -4895709390, -8489647530, 10975099590, 75528298755, 100311659721, -230350834728, -1097798696456
OFFSET
0,2
FORMULA
a(0) = 1, a(1) = 7; a(n) = ((2*n+5)*a(n-1) - 5*(n+5)*a(n-2))/n.
a(n) = (binomial(n+6,3)/20) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = Pochhammer(n+1, 6)*hypergeom([(1-n)/2, -n/2], [4], -4)/6!. - Stefano Spezia, Jul 10 2024
MATHEMATICA
a[n_]:= Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, -4]/6!; Array[a, 28, 0] (* Stefano Spezia, Jul 10 2024 *)
PROG
(PARI) a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, (-1)^k*binomial(n+3, n-2*k)*binomial(2*k+3, k));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 09 2024
STATUS
approved