OFFSET
0,2
FORMULA
a(1)=0. a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of 2^(1/3), a(i+1)=p(i).
EXAMPLE
2^(1/3)=1.259921049894873164767210607...
So for example, with a(1)=0, a(2)=7 because the 7th digit after the decimal point is 0; a(3)=14 because the 14th digit after the decimal point is 7 and so on.
MAPLE
with(StringTools): Digits:=10000: G:=convert(evalf(root(2, 3)), string): a[0]:=0: for n from 1 to 12 do a[n]:=Search(convert(a[n-1], string), G)-2:printf("%d, ", a[n-1]):od: # Nathaniel Johnston, Apr 30 2011
CROSSREFS
Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A098326 for sqrt(2), A098327 for sqrt(e). A002580 for digits of 2^(1/3).
KEYWORD
base,more,nonn
AUTHOR
Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 14 2004
EXTENSIONS
More terms from Ryan Propper, Jul 21 2006
STATUS
approved