login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373029
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of distinct partitions p of n such that max(p) is a multiple of k.
2
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 2, 2, 1, 1, 1, 0, 5, 3, 1, 2, 1, 1, 1, 0, 6, 3, 1, 2, 2, 1, 1, 1, 0, 8, 4, 3, 2, 2, 2, 1, 1, 1, 0, 10, 5, 3, 2, 3, 2, 2, 1, 1, 1, 0, 12, 6, 4, 2, 3, 3, 2, 2, 1, 1, 1, 0, 15, 7, 6, 3, 3, 4, 3, 2, 2, 1, 1, 1, 0, 18, 9, 6, 4, 3, 4, 4, 3, 2, 2, 1, 1, 1
OFFSET
0,8
FORMULA
For k > 0, g.f. of column k: Sum_{i>=0} x^(k*i) * Product_{j=1..k*i-1} (1+x^j).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 1, 1;
0, 2, 1, 1, 1;
0, 3, 1, 1, 1, 1;
0, 4, 2, 2, 1, 1, 1;
0, 5, 3, 1, 2, 1, 1, 1;
0, 6, 3, 1, 2, 2, 1, 1, 1;
0, 8, 4, 3, 2, 2, 2, 1, 1, 1;
0, 10, 5, 3, 2, 3, 2, 2, 1, 1, 1;
0, 12, 6, 4, 2, 3, 3, 2, 2, 1, 1, 1;
0, 15, 7, 6, 3, 3, 4, 3, 2, 2, 1, 1, 1;
0, 18, 9, 6, 4, 3, 4, 4, 3, 2, 2, 1, 1, 1;
CROSSREFS
Row sums give A373030.
Column k=0..3 give A000007, A000009, A026838, A372893.
T(2n,n) gives A000009.
Cf. A363048.
Sequence in context: A083661 A029369 A255315 * A125072 A162642 A366246
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 20 2024
STATUS
approved