login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125072
a(n) = number of exponents in the prime-factorization of n which are triangular numbers.
3
0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 1, 2, 3
OFFSET
1,6
FORMULA
Additive with a(p^e) = A010054(e). - Antti Karttunen, Jul 08 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -P(2) + Sum_{k>=2} (P(k*(k+1)/2) - P(k*(k+1)/2 + 1)) = -0.34517646457715166126..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 28 2023
EXAMPLE
The prime-factorization of 360 is 2^3 *3^2 *5^1. There are two exponents in this factorization which are triangular numbers, 1 and 3. So a(360) = 2.
MATHEMATICA
f[n_] := Length @ Select[Last /@ FactorInteger[n], IntegerQ[Sqrt[8# + 1]] &]; Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
PROG
(PARI)
A010054(n) = issquare(8*n + 1); \\ This function from Michael Somos, Apr 27 2000.
A125072(n) = vecsum(apply(e -> A010054(e), factorint(n)[, 2])); \\ Antti Karttunen, Jul 08 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Nov 18 2006
EXTENSIONS
Extended by Ray Chandler, Nov 19 2006
STATUS
approved