Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 10 2024 09:15:46
%S 1,4,0,2,1,8,2,1,0,5,3,2,5,4,5,4,2,6,1,1,7,5,0,1,9,0,7,9,0,5,0,2,9,4,
%T 1,3,5,4,6,3,0,2,2,2,0,5,4,2,3,9,8,6,0,9,6,1,8,1,9,9,3,9,8,7,0,7,6,2,
%U 8,4,7,6,5,9,8,1,8,0,3,2,9,6,0,7,0,8,5,2,2,6,6,4,8,5,0,2,4,7,8,4,7,0,5,5
%N Decimal expansion of Integral_{x=0..1} 1 / sqrt(1 - x^3) dx.
%F Equals sqrt(Pi) * Gamma(4/3) / Gamma(5/6).
%F Equals Gamma(1/3)^3 / (2^(4/3) * sqrt(3) * Pi). - _Vaclav Kotesovec_, Apr 09 2024
%F Equals A118292/2. - _Hugo Pfoertner_, Apr 09 2024
%e 1.4021821053254542611750190790502941354630222...
%t RealDigits[Sqrt[Pi] Gamma[4/3]/Gamma[5/6], 10, 104][[1]]
%t RealDigits[Gamma[1/3]^3 / (2^(4/3)*Sqrt[3]*Pi), 10, 104][[1]] (* _Vaclav Kotesovec_, Apr 09 2024 *)
%Y Decimal expansions of Integral_{x=0..1} 1 / sqrt(1 - x^k) dx: A019669 (k=2), this sequence (k=3), A085565 (k=4).
%Y Cf. A002161, A118292, A202623, A203145.
%K nonn,cons
%O 1,2
%A _Ilya Gutkovskiy_, Apr 09 2024