login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371860
Decimal expansion of Integral_{x=0..1} 1 / sqrt(1 - x^3) dx.
0
1, 4, 0, 2, 1, 8, 2, 1, 0, 5, 3, 2, 5, 4, 5, 4, 2, 6, 1, 1, 7, 5, 0, 1, 9, 0, 7, 9, 0, 5, 0, 2, 9, 4, 1, 3, 5, 4, 6, 3, 0, 2, 2, 2, 0, 5, 4, 2, 3, 9, 8, 6, 0, 9, 6, 1, 8, 1, 9, 9, 3, 9, 8, 7, 0, 7, 6, 2, 8, 4, 7, 6, 5, 9, 8, 1, 8, 0, 3, 2, 9, 6, 0, 7, 0, 8, 5, 2, 2, 6, 6, 4, 8, 5, 0, 2, 4, 7, 8, 4, 7, 0, 5, 5
OFFSET
1,2
FORMULA
Equals sqrt(Pi) * Gamma(4/3) / Gamma(5/6).
Equals Gamma(1/3)^3 / (2^(4/3) * sqrt(3) * Pi). - Vaclav Kotesovec, Apr 09 2024
Equals A118292/2. - Hugo Pfoertner, Apr 09 2024
EXAMPLE
1.4021821053254542611750190790502941354630222...
MATHEMATICA
RealDigits[Sqrt[Pi] Gamma[4/3]/Gamma[5/6], 10, 104][[1]]
RealDigits[Gamma[1/3]^3 / (2^(4/3)*Sqrt[3]*Pi), 10, 104][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)
CROSSREFS
Decimal expansions of Integral_{x=0..1} 1 / sqrt(1 - x^k) dx: A019669 (k=2), this sequence (k=3), A085565 (k=4).
Sequence in context: A337996 A087604 A090538 * A320157 A320479 A218769
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 09 2024
STATUS
approved